Thursday, September 4, 2025
HomeData Modelling & AICount of cells in a matrix whose adjacent cells’s sum is prime...

Count of cells in a matrix whose adjacent cells’s sum is prime Number

Given a M x N matrix mat[][], the task is to count the number of cells which have the sum of its adjacent cells equal to a prime number. For a cell x[i][j], only x[i+1][j], x[i-1][j], x[i][j+1] and x[i][j-1] are the adjacent cells.
Examples: 

Input : mat[][] = {{1, 3}, {2, 5}} 
Output :
Explanation: Only the cells mat[0][0] and mat[1][1] satisfying the condition. 
i.e for mat[0][0]:(3+2) = 5, for mat[1][1]: (3+2) = 5
Input : mat[][] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} 
Output :
Explanation: Cells mat[0][0], mat[0][2], mat[0][3], mat[1][3], mat[2][2] and mat[2][3] are satisfying the condition. 
 

Prerequisites: Sieve of Eratosthenes 
Approach:  

  • Precompute and store the prime numbers using Sieve.
  • Iterate the entire matrix and for each cell find the sum of all adjacent cells.
  • If the sum of adjacent cells equal to a prime number then increments the count.
  • Return the value of the count.

Below is the implementation of the above approach.
 

C++




// CPP program to find the cells whose
// adjacent cells's sum is prime Number
#include <bits/stdc++.h>
using namespace std;
#define MAX 100005
 
bool prime[MAX];
 
void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..MAX-1]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    memset(prime, true, sizeof(prime));
 
    prime[0] = prime[1] = false;
 
    for (int p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
            // Update all multiples of p
            // greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to count the cells having
// adjacent cell's sum
// is equal to prime
int PrimeSumCells(vector<vector<int> >& mat)
{
    int count = 0;
 
    int N = mat.size();
    int M = mat[0].size();
 
    // Traverse for all the cells
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < M; j++) {
 
            int sum = 0;
 
            // i-1, j
            if (i - 1 >= 0)
                sum += mat[i - 1][j];
 
            // i+1, j
            if (i + 1 < N)
                sum += mat[i + 1][j];
 
            // i, j-1
            if (j - 1 >= 0)
                sum += mat[i][j - 1];
 
            // i, j+1
            if (j + 1 < M)
                sum += mat[i][j + 1];
 
            // If the sum is a prime number
            if (prime[sum])
                count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Program
int main()
{
    SieveOfEratosthenes();
 
    vector<vector<int> > mat = { { 1, 2, 3, 4 },
                                 { 5, 6, 7, 8 },
                                 { 9, 10, 11, 12 } };
 
    // Function call
    cout << PrimeSumCells(mat) << endl;
}


Java




// Java program to find the cells whose
// adjacent cells's sum is prime Number
class GFG{
static final int MAX = 100005;
 
static boolean []prime = new boolean[MAX];
 
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..MAX-1]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    for (int i = 0; i < prime.length; i++)
    prime[i] = true;
 
    prime[0] = prime[1] = false;
 
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
            // Update all multiples of p
            // greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to count the cells having
// adjacent cell's sum
// is equal to prime
static int PrimeSumCells(int [][]mat)
{
    int count = 0;
 
    int N = mat.length;
    int M = mat[0].length;
 
    // Traverse for all the cells
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
            int sum = 0;
 
            // i-1, j
            if (i - 1 >= 0)
                sum += mat[i - 1][j];
 
            // i+1, j
            if (i + 1 < N)
                sum += mat[i + 1][j];
 
            // i, j-1
            if (j - 1 >= 0)
                sum += mat[i][j - 1];
 
            // i, j+1
            if (j + 1 < M)
                sum += mat[i][j + 1];
 
            // If the sum is a prime number
            if (prime[sum])
                count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
public static void main(String[] args)
{
    SieveOfEratosthenes();
 
    int [][]mat = { { 1, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 } };
 
    // Function call
    System.out.print(PrimeSumCells(mat) + "\n");
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python 3 program to
# find the cells whose
# adjacent cells's
# sum is prime Number
MAX = 100005
prime = [True] * MAX
 
def SieveOfEratosthenes():
 
    # Create a boolean array "prime[0..MAX-1]"
    # and initialize all entries it as true.
    # A value in prime[i] will finally
    # be false if i is Not a prime, else true.
    global prime
     
    prime[0] = prime[1] = False
 
    p = 2
    while p * p < MAX:
       
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
           
            # Update all multiples of p
            # greater than or
            # equal to the square of it
            # numbers which are multiple of
            # p and are less than p^2 are
            # already been marked.
            for i in range (p * p, MAX, p):
                prime[i] = False               
        p += 1
       
# Function to count the
# cells having adjacent
# cell's sum is equal to prime
def PrimeSumCells(mat):
 
    count = 0
    N = len(mat)
    M = len(mat[0])
 
    # Traverse for all the cells
    for i in range (N):
        for j in range (M):
 
            sum = 0
 
            # i - 1, j
            if (i - 1 >= 0):
                sum += mat[i - 1][j]
 
            # i + 1, j
            if (i + 1 < N):
                sum += mat[i + 1][j]
 
            # i, j - 1
            if (j - 1 >= 0):
                sum += mat[i][j - 1]
 
            # i, j + 1
            if (j + 1 < M):
                sum += mat[i][j + 1]
 
            # If the sum is a prime number
            if (prime[sum]):
                count += 1
    
    # Return the count
    return count
 
# Driver code
if __name__ =="__main__":
       
    SieveOfEratosthenes()
    mat = [[1, 2, 3, 4],
           [5, 6, 7, 8],
           [9, 10, 11, 12]]
 
    # Function call
    print (PrimeSumCells(mat))
     
# This code is contributed by Chitranayal


C#




// C# program to find the cells whose
// adjacent cells's sum is prime Number
using System;
class GFG{
     
static readonly int MAX = 100005;
static bool []prime = new bool[MAX];
 
static void SieveOfEratosthenes()
{
    // Create a bool array "prime[0..MAX-1]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    for (int i = 0; i < prime.Length; i++)
    prime[i] = true;
 
    prime[0] = prime[1] = false;
 
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
            // Update all multiples of p
            // greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to count the cells having
// adjacent cell's sum
// is equal to prime
static int PrimeSumCells(int [,]mat)
{
    int count = 0;
 
    int N = mat.GetLength(0);
    int M = mat.GetLength(1);
 
    // Traverse for all the cells
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
            int sum = 0;
 
            // i-1, j
            if (i - 1 >= 0)
                sum += mat[i - 1, j];
 
            // i+1, j
            if (i + 1 < N)
                sum += mat[i + 1, j];
 
            // i, j-1
            if (j - 1 >= 0)
                sum += mat[i, j - 1];
 
            // i, j+1
            if (j + 1 < M)
                sum += mat[i, j + 1];
 
            // If the sum is a prime number
            if (prime[sum])
                count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    SieveOfEratosthenes();
 
    int [,]mat = { { 1, 2, 3, 4 },
                   { 5, 6, 7, 8 },
                   { 9, 10, 11, 12 } };
 
    // Function call
    Console.Write(PrimeSumCells(mat) + "\n");
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
// Javascript program to find the cells whose
// adjacent cells's sum is prime Number
 
let MAX = 100005
 
let prime = new Array(MAX);
 
function SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..MAX-1]"
    // and initialize all entries it as true.
    // A value in prime[i] will finally
    // be false if i is Not a prime, else true.
    prime.fill(true)
 
    prime[0] = prime[1] = false;
 
    for (let p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
            // Update all multiples of p
            // greater than or
            // equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (let i = p * p; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to count the cells having
// adjacent cell's sum
// is equal to prime
function PrimeSumCells(mat)
{
    let count = 0;
 
    let N = mat.length;
    let M = mat[0].length;
 
    // Traverse for all the cells
    for (let i = 0; i < N; i++) {
        for (let j = 0; j < M; j++) {
 
            let sum = 0;
 
            // i-1, j
            if (i - 1 >= 0)
                sum += mat[i - 1][j];
 
            // i+1, j
            if (i + 1 < N)
                sum += mat[i + 1][j];
 
            // i, j-1
            if (j - 1 >= 0)
                sum += mat[i][j - 1];
 
            // i, j+1
            if (j + 1 < M)
                sum += mat[i][j + 1];
 
            // If the sum is a prime number
            if (prime[sum])
                count++;
        }
    }
 
    // Return the count
    return count;
}
 
// Driver Program
    SieveOfEratosthenes();
 
    let mat = [ [ 1, 2, 3, 4 ],
                                [ 5, 6, 7, 8 ],
                                [ 9, 10, 11, 12 ] ];
 
    // Function call
    document.write(PrimeSumCells(mat) + "<br>");
 
// This code is contributed by gfgking
 
</script>


Output: 

6

 

Time Complexity: O(N*M)

Auxiliary Space: O(MAX)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32261 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6626 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11855 POSTS0 COMMENTS
Shaida Kate Naidoo
6747 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6695 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS