Given three integers, N, K and M. The task is to find out the number of binary strings of length N which always starts with 1, in which there can be at most M consecutive 1’s or 0’s and they alternate exactly K times.
Examples:
Input: N = 5, K = 3, M = 2
Output: 3
The 3 configurations are:
11001
10011
11011
Explanation:
Notice that the groups of 1’s and 0’s alternate exactly K times
Input: N = 7, K = 4, M = 3
Output: 16
Approach: Since this problem involves both overlapping sub-problem and optimal substructure. So, this problem can be solved using dynamic programming.
- Sub-problem: DP[i][j] represents the number of binary strings upto length i having j alternating groups till now. So, to calculate dp[N][K] if we know the value of dp[n-j][k-1], then we can easily get the result by summing up the sub-problem value over j = 1 to m (DP[N][K] represents the final answer).
As shown below in the recursion tree diagram, it is observed many sub-problem overlaps. So, the result needs to be cached to avoid redundant calculations.
- Optimal substructure:
- By following the top-down DP approach:
As we can have a group which can be atmost of the length M, so we iterate on every possible length and recur with new N and decreasing K by 1, as a new group is formed. Solution to sub-problem is cached and summed up to give final result dp[N][K].
- Base Case:
- When N is 0 and K is 0, then return 1
- When N is 0 but K is not 0, then return 0
- When N is not 0 but K is 0, then return 0
- When both are negative, return 0
Below is the implementation of above approach:
C++
// C++ program to find the count // of Binary strings of length N // having atmost M consecutive 1s or 0s // alternatively exactly K times #include <bits/stdc++.h> using namespace std; // Array to contain the final result int dp[1000][1000]; // Function to get the number // of desirable binary strings int solve( int n, int k, int m) { // if we reach end of string // and groups are exhausted, // return 1 if (n == 0 && k == 0) return 1; // if length is exhausted but // groups are still to be made, // return 0 if (n == 0 && k != 0) return 0; // if length is not exhausted // but groups are exhausted, // return 0 if (n != 0 && k == 0) return 0; // if both are negative // just return 0 if (n < 0 || k < 0) return 0; // if already calculated, // return it if (dp[n][k]) return dp[n][k]; // initialise answer // for each state int ans = 0; // loop through every // possible m for ( int j = 1; j <= m; j++) { ans += solve(n - j, k - 1, m); } return dp[n][k] = ans; } // Driver code int main() { int N = 7, K = 4, M = 3; cout << solve(N, K, M); } |
Java
// Java program to find the count of // Binary Strings of length N having // atmost M consecutive 1s or 0s // alternatively exactly K times import java.util.*; class GFG{ // Array to contain the final result static int [][]dp = new int [ 1000 ][ 1000 ]; // Function to get the number // of desirable binary strings static int solve( int n, int k, int m) { // If we reach end of string // and groups are exhausted, // return 1 if (n == 0 && k == 0 ) return 1 ; // If length is exhausted but // groups are still to be made, // return 0 if (n == 0 && k != 0 ) return 0 ; // If length is not exhausted // but groups are exhausted, // return 0 if (n != 0 && k == 0 ) return 0 ; // If both are negative // just return 0 if (n < 0 || k < 0 ) return 0 ; // If already calculated, // return it if (dp[n][k] > 0 ) return dp[n][k]; // Initialise answer // for each state int ans = 0 ; // Loop through every // possible m for ( int j = 1 ; j <= m; j++) { ans += solve(n - j, k - 1 , m); } return dp[n][k] = ans; } // Driver code public static void main(String[] args) { int N = 7 , K = 4 , M = 3 ; System.out.print(solve(N, K, M)); } } // This code is contributed by Rajput-Ji |
Python 3
# Python3 program to find the count # of Binary strings of length N # having atmost M consecutive 1s or # 0s alternatively exactly K times # List to contain the final result rows, cols = ( 1000 , 1000 ) dp = [[ 0 for i in range (cols)] for j in range (rows)] # Function to get the number # of desirable binary strings def solve(n, k, m): # If we reach end of string # and groups are exhausted, # return 1 if n = = 0 and k = = 0 : return 1 # If length is exhausted but # groups are still to be made, # return 0 if n = = 0 and k ! = 0 : return 0 # If length is not exhausted # but groups are exhausted, # return 0 if n ! = 0 and k = = 0 : return 0 # If both are negative # just return 0 if n < 0 or k < 0 : return 0 # If already calculated, # return it if dp[n][k]: return dp[n][k] # Initialise answer # for each state ans = 0 # Loop through every # possible m for j in range ( 1 , m + 1 ): ans = ans + solve(n - j, k - 1 , m) dp[n][k] = ans return dp[n][k] # Driver code N = 7 K = 4 M = 3 print (solve(N, K, M)) # This code is contributed by ishayadav181 |
C#
// C# program to find the count of // binary strings of length N having // atmost M consecutive 1s or 0s // alternatively exactly K times using System; class GFG{ // Array to contain the readonly result static int [,]dp = new int [1000, 1000]; // Function to get the number // of desirable binary strings static int solve( int n, int k, int m) { // If we reach end of string // and groups are exhausted, // return 1 if (n == 0 && k == 0) return 1; // If length is exhausted but // groups are still to be made, // return 0 if (n == 0 && k != 0) return 0; // If length is not exhausted // but groups are exhausted, // return 0 if (n != 0 && k == 0) return 0; // If both are negative // just return 0 if (n < 0 || k < 0) return 0; // If already calculated, // return it if (dp[n, k] > 0) return dp[n, k]; // Initialise answer // for each state int ans = 0; // Loop through every // possible m for ( int j = 1; j <= m; j++) { ans += solve(n - j, k - 1, m); } return dp[n, k] = ans; } // Driver code public static void Main(String[] args) { int N = 7, K = 4, M = 3; Console.Write(solve(N, K, M)); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript program to find the count of // Binary Strings of length N having // atmost M consecutive 1s or 0s // alternatively exactly K times // Array to contain the final result dp = Array(1000); for (i =0;i<1000;i++) dp[i] = Array(1000).fill(0); // Function to get the number // of desirable binary strings function solve(n , k , m) { // If we reach end of string // and groups are exhausted, // return 1 if (n == 0 && k == 0) return 1; // If length is exhausted but // groups are still to be made, // return 0 if (n == 0 && k != 0) return 0; // If length is not exhausted // but groups are exhausted, // return 0 if (n != 0 && k == 0){ return 0; } // If both are negative // just return 0 if (n < 0 || k < 0) return 0; // If already calculated, // return it if (dp[n][k] > 0) return dp[n][k]; // Initialise answer // for each state var ans = 0; // Loop through every // possible m for ( var j = 1; j <= m; j++) { ans += solve(n - j, k - 1, m); // document.write(ans); } return dp[n][k] = ans; } // Driver code var N = 7, K = 4, M = 3; document.write(solve(N, K, M)); // This code contributed by umadevi9616 </script> |
16
Time complexity: O(N*K*M)
Auxiliary Space: O(1000*1000)
Efficient approach : Using DP Tabulation method ( Iterative approach )
The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.
Steps to solve this problem :
- Create a DP to store the solution of the subproblems and initialize it with 0.
- Initialize the DP with base cases dp[0][0] = 1.
- Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP
- Return the final solution stored in dp[n][k].
Implementation :
C++
// C++ code for above approach #include <bits/stdc++.h> using namespace std; // Function to get the number // of desirable binary strings int countBinaryStrings( int n, int k, int m) { vector<vector< int >> dp(n + 1, vector< int >(k + 1, 0)); // initialize the base cases dp[0][0] = 1; for ( int i = 1; i <= m && i <= n; i++) { dp[i][1] = 1; } // compute the remaining values for ( int i = 1; i <= n; i++) { for ( int j = 2; j <= k; j++) { for ( int l = 1; l <= m && l <= i; l++) { // update DP from previus stored values dp[i][j] += dp[i - l][j - 1]; } } } // return final answer return dp[n][k]; } int main() { int n = 7, k = 4, m = 3; cout << countBinaryStrings(n, k, m) << endl; return 0; } // --- by bhardwajji |
Java
import java.util.*; public class Main { // Function to get the number // of desirable binary strings static int countBinaryStrings( int n, int k, int m) { int [][] dp = new int [n + 1 ][k + 1 ]; // initialize the base cases dp[ 0 ][ 0 ] = 1 ; for ( int i = 1 ; i <= m && i <= n; i++) { dp[i][ 1 ] = 1 ; } // compute the remaining values for ( int i = 1 ; i <= n; i++) { for ( int j = 2 ; j <= k; j++) { for ( int l = 1 ; l <= m && l <= i; l++) { // update DP from previous stored values dp[i][j] += dp[i - l][j - 1 ]; } } } // return final answer return dp[n][k]; } public static void main(String[] args) { int n = 7 , k = 4 , m = 3 ; System.out.println(countBinaryStrings(n, k, m)); } } |
Python3
def countBinaryStrings(n, k, m): # initialize dp matrix dp = [[ 0 ] * (k + 1 ) for i in range (n + 1 )] # initialize base cases dp[ 0 ][ 0 ] = 1 for i in range ( 1 , min (m + 1 , n + 1 )): dp[i][ 1 ] = 1 # compute remaining values for i in range ( 1 , n + 1 ): for j in range ( 2 , k + 1 ): for l in range ( 1 , min (m + 1 , i + 1 )): dp[i][j] + = dp[i - l][j - 1 ] # return final answer return dp[n][k] # example usage n = 7 k = 4 m = 3 print (countBinaryStrings(n, k, m)) |
C#
using System; class Program { // Function to count desirable binary strings static int CountBinaryStrings( int n, int k, int m) { // Initialize a 2D array for dynamic programming int [,] dp = new int [n + 1, k + 1]; // Initialize base cases dp[0, 0] = 1; for ( int i = 1; i <= m && i <= n; i++) { dp[i, 1] = 1; } // Compute the remaining values for ( int i = 1; i <= n; i++) { for ( int j = 2; j <= k; j++) { for ( int l = 1; l <= m && l <= i; l++) { // Update dp from previously stored values dp[i, j] += dp[i - l, j - 1]; } } } // Return the final answer return dp[n, k]; } static void Main() { int n = 7, k = 4, m = 3; Console.WriteLine(CountBinaryStrings(n, k, m)); } } |
16
Time complexity: O(N*K*M)
Auxiliary Space: O(N*K)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!