Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of all possible values of X whose Bitwise XOR with ...

Count of all possible values of X whose Bitwise XOR with N is greater than N

Given an integer N count the number of values of X such that  XN > N, where  denotes bitwise  XOR operation

Examples:

Input: N = 10
Output:
Explanation: The five possible value satisfying the above condition are:
1⊕10 = 11, 4⊕10 = 14, 5⊕10 = 15, 6⊕10 = 12, 7⊕10 = 13

Input: N = 8
Output: 7
Explanation: The seven possible value satisfying the above condition are:
1⊕8 = 9, 2⊕8 = 10, 3⊕8 = 11, 4⊕8 = 12, 5⊕8 = 13, 6⊕8 = 14, 7⊕8 = 15

 

Naive Approach: The simple approach to this problem is to iterate from 1 to N and increment the count if  X XOR N >N  for 0 < X < N. Finally, return the count of the number of values.

Time Complexity: O(N)
Auxiliary Space: O(1)

Efficient Approach: The most efficient approach is to find the number nearest to the next power of 2 which has all its bits set and finally subtract it from the original number. Given below is the mathematical observation of the solution:

If number N can be written by using k bits then number  X must use k-1 bits at most because:-

  • If a number X has a same bits as number N Xoring both the number will result in a number less than N which wont satisfy our condition X xor N > N.
  • If a number X is greater than number N then Xoring both the number  will always result X is greater than N which wont satisfy our inequality.
    So the problem reduces to find the count of the number that lies in the given range [x , 2k – 1]. We are taking 2k – 1 because this is the maximum number that can be form when all its n bits are set.
  • The require number equals  2k – 1 -N .

Follow the steps below to solve the problem:

  • Find the nearest next power of 2.
  • Subtract 1 from the nearest power of 2  so that the given number has all its bit set
  • Finally, subtract from the original number and return it

Below is the implementation of the above approach: 

C++




// C++ program for find the count of
// number of value of X such that  N XOR X >N
 
#include <bits/stdc++.h>
using namespace std;
 
// Function for  calculating the total
// possible value satisfy the condition
// X⊕N > N and 0 < X < N
void maximumXor(long long N)
{
    long long num = N;
    long long int count;
 
    count = 0;
    while (N > 0) {
 
        // Count the total number of bits
        count++;
        N = N / 2;
    }
    long long next_power = ((long long)1 << count);
 
    // Finding the next power of 2
    // of the given number
    long long result = next_power - 1;
 
    // Finding the number nearest to
    // the nextpower of 2 which has all
    // its bits set
    cout << result - num;
}
 
// Driver Code
int main()
{
    int N = 10;
    maximumXor(N);
    return 0;
}


Java




// Java program for find the count of
// number of value of X such that  N XOR X >N
import java.util.*;
public class GFG {
 
  // Function for  calculating the total
  // possible value satisfy the condition
  // X⊕N > N and 0 < X < N
  static void maximumXor(long N)
  {
    long num = N;
    long count = 0;
 
    count = 0;
    while (N > 0) {
 
      // Count the total number of bits
      count++;
      N = N / 2;
    }
    long next_power = ((long)1 << count);
 
    // Finding the next power of 2
    // of the given number
    long result = next_power - 1;
 
    // Finding the number nearest to
    // the nextpower of 2 which has all
    // its bits set
    System.out.print(result - num);
  }
 
  // Driver Code
  public static void main(String args[])
  {
    int N = 10;
    maximumXor(N);
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# python3 program for find the count of
# number of value of X such that N XOR X >N
 
# Function for calculating the total
# possible value satisfy the condition
# X⊕N > N and 0 < X < N
def maximumXor(N):
 
    num = N
    count = 0
 
    while (N > 0):
 
        # Count the total number of bits
        count += 1
        N = N // 2
 
    next_power = (1 << count)
 
    # Finding the next power of 2
    # of the given number
    result = next_power - 1
 
    # Finding the number nearest to
    # the nextpower of 2 which has all
    # its bits set
    print(result - num)
 
# Driver Code
if __name__ == "__main__":
 
    N = 10
    maximumXor(N)
 
# This code is contributed by rakeshsahni


C#




// C# program for find the count of
// number of value of X such that  N XOR X >N
using System;
 
public class GFG
{
 
  // Function for  calculating the total
  // possible value satisfy the condition
  // X⊕N > N and 0 < X < N
  static void maximumXor(long N)
  {
    long num = N;
    long count = 0;
 
    count = 0;
    while (N > 0) {
 
      // Count the total number of bits
      count++;
      N = N / 2;
    }
    long next_power = (1 << (int)count);
 
    // Finding the next power of 2
    // of the given number
    long result = next_power - 1;
 
    // Finding the number nearest to
    // the nextpower of 2 which has all
    // its bits set
    Console.Write(result - num);
  }
 
  // Driver Code
  public static void Main(String []args)
  {
    int N = 10;
    maximumXor(N);
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function for  calculating the total
       // possible value satisfy the condition
       // X⊕N > N and 0 < X < N
       function maximumXor(N) {
           let num = N;
           let count;
 
           count = 0;
           while (N > 0) {
 
               // Count the total number of bits
               count++;
               N = Math.floor(N / 2);
           }
           let next_power = (1 << count);
 
           // Finding the next power of 2
           // of the given number
           let result = next_power - 1;
 
           // Finding the number nearest to
           // the nextpower of 2 which has all
           // its bits set
           document.write(result - num);
       }
 
       // Driver Code
       let N = 10;
       maximumXor(N);
 
    // This code is contributed by Potta Lokesh
   </script>


 
 

Output

5

 

Time Complexity: O(log(N))
Auxiliary Space: O(1) 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments