Given an array arr[] consisting of N integers, the task is to count all the subarrays which are Bitonic in nature.
A bitonic subarray is a subarray in which elements are either strictly increasing or strictly decreasing, or are first increasing and then decreasing.
Examples:
Input: arr[] = {2, 1, 4, 5}
Output: 8
Explanation:
All subarray which are bitonic in subarray are : {2}, {2, 1}, {1}, {1, 4}, {1, 4, 5}, {4}, {4, 5} and {5}.
Input: arr[] = {1, 2, 3, 4}
Output:10
Approach:
Follow the steps below to solve the problems:
- Generate all possible subarrays.
- For each subarray, check if it is bitonic or not. If the subarray is Bitonic then increment count for answer.
- Finally return the answer.
Below is the implementation of the above approach :
C++
// C++ program to count the // number of possible // bitonic subarrays #include <bits/stdc++.h> using namespace std; // Function to return the count // of bitonic subarrays void countbitonic( int arr[], int n) { int c = 0; // Starting element of subarray for ( int i = 0; i < n; i++) { // Ending element of subarray for ( int j = i; j < n; j++) { int temp = arr[i], f = 0; // for 1 length if (j == i) { c++; continue ; } int k = i + 1; // For increasing sequence while (temp < arr[k] && k <= j) { temp = arr[k]; k++; } // If strictly increasing if (k > j) { c++; f = 2; } // For decreasing sequence while (temp > arr[k] && k <= j && f != 2) { temp = arr[k]; k++; } if (k > j && f != 2) { c++; f = 0; } } } cout << c << endl; } // Driver Code int main() { int arr[] = { 1, 2, 4, 3, 6, 5 }; int N = 6; countbitonic(arr, N); } |
Java
// Java program to count the number // of possible bitonic subarrays import java.io.*; import java.util.*; class GFG{ // Function to return the count // of bitonic subarrays public static void countbitonic( int arr[], int n) { int c = 0 ; // Starting element of subarray for ( int i = 0 ; i < n; i++) { // Ending element of subarray for ( int j = i; j < n; j++) { int temp = arr[i], f = 0 ; // For 1 length if (j == i) { c++; continue ; } int k = i + 1 ; // For increasing sequence while (temp < arr[k] && k <= j) { temp = arr[k]; k++; } // If strictly increasing if (k > j) { c++; f = 2 ; } // For decreasing sequence while ( k <= j && temp > arr[k] && f != 2 ) { temp = arr[k]; k++; } if (k > j && f != 2 ) { c++; f = 0 ; } } } System.out.println(c); } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 4 , 3 , 6 , 5 }; int N = 6 ; countbitonic(arr, N); } } // This code is contributed by grand_master |
Python3
# Python3 program to count the number # of possible bitonic subarrays # Function to return the count # of bitonic subarrays def countbitonic(arr, n): c = 0 ; # Starting element of subarray for i in range (n): # Ending element of subarray for j in range (i, n): temp = arr[i] f = 0 ; # For 1 length if (j = = i) : c + = 1 continue ; k = i + 1 ; # For increasing sequence while (temp < arr[k] and k < = j): temp = arr[k]; k + = 1 # If strictly increasing if (k > j) : c + = 1 f = 2 ; # For decreasing sequence while (k < = j and temp > arr[k] and f ! = 2 ): temp = arr[k]; k + = 1 ; if (k > j and f ! = 2 ): c + = 1 ; f = 0 ; print (c) # Driver Code arr = [ 1 , 2 , 4 , 3 , 6 , 5 ]; N = 6 ; countbitonic(arr, N); # This code is contributed by grand_master |
C#
// C# program to count the number // of possible bitonic subarrays using System; class GFG{ // Function to return the count // of bitonic subarrays public static void countbitonic( int []arr, int n) { int c = 0; // Starting element of subarray for ( int i = 0; i < n; i++) { // Ending element of subarray for ( int j = i; j < n; j++) { int temp = arr[i], f = 0; // for 1 length if (j == i) { c++; continue ; } int k = i + 1; // For increasing sequence while (temp < arr[k] && k <= j) { temp = arr[k]; k++; } // If strictly increasing if (k > j) { c++; f = 2; } // For decreasing sequence while ( k <= j && temp > arr[k] && f != 2) { temp = arr[k]; k++; } if (k > j && f != 2) { c++; f = 0; } } } Console.Write(c); } // Driver code public static void Main() { int [] arr = { 1, 2, 4, 3, 6, 5 }; int N = 6; countbitonic(arr, N); } } // This code is contributed by grand_master |
Javascript
<script> // Javascript program to count the // number of possible // bitonic subarrays // Function to return the count // of bitonic subarrays function countbitonic(arr, n) { var c = 0; // Starting element of subarray for ( var i = 0; i < n; i++) { // Ending element of subarray for ( var j = i; j < n; j++) { var temp = arr[i], f = 0; // for 1 length if (j == i) { c++; continue ; } var k = i + 1; // For increasing sequence while (temp < arr[k] && k <= j) { temp = arr[k]; k++; } // If strictly increasing if (k > j) { c++; f = 2; } // For decreasing sequence while (temp > arr[k] && k <= j && f != 2) { temp = arr[k]; k++; } if (k > j && f != 2) { c++; f = 0; } } } document.write( c ); } // Driver Code var arr = [1, 2, 4, 3, 6, 5]; var N = 6; countbitonic(arr, N); // This code is contributed by rutvik_56. </script> |
15
Time Complexity: O (N 3)
Auxiliary Space: O (1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!