Saturday, January 4, 2025
Google search engine
HomeData Modelling & AICount of all even numbers in the range whose sum of...

Count of all even numbers in the range [L, R] whose sum of digits is divisible by 3

Given two integers L and R. The task is to find the count of all even numbers in the range [L, R] whose sum of digits is divisible by 3.
Examples: 
 

Input: L = 18, R = 36 
Output:
18, 24, 30, 36 are the only numbers in the range [18, 36] which are even and whose sum of digits is divisible by 3.
Input: L = 7, R = 11 
Output:
There is no number in the range [7, 11] which is even and whose sum of digits is divisible by 3. 
 

 

Naive approach: Initialize count = 0 and for every number in the range [L, R], check if the number is divisible by 2 and sum of its digits is divisible by 3. If yes then increment the count. Print the count in the end.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// sum of digits of x
int sumOfDigits(int x)
{
    int sum = 0;
    while (x != 0) {
        sum += x % 10;
        x = x / 10;
    }
    return sum;
}
 
// Function to return the count
// of required numbers
int countNumbers(int l, int r)
{
    int count = 0;
    for (int i = l; i <= r; i++) {
 
        // If i is divisible by 2 and
        // sum of digits of i is divisible by 3
        if (i % 2 == 0 && sumOfDigits(i) % 3 == 0)
            count++;
    }
 
    // Return the required count
    return count;
}
 
// Driver code
int main()
{
    int l = 1000, r = 6000;
    cout << countNumbers(l, r);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the
// sum of digits of x
static int sumOfDigits(int x)
{
    int sum = 0;
    while (x != 0)
    {
        sum += x % 10;
        x = x / 10;
    }
    return sum;
}
 
// Function to return the count
// of required numbers
static int countNumbers(int l, int r)
{
    int count = 0;
    for (int i = l; i <= r; i++)
    {
 
        // If i is divisible by 2 and
        // sum of digits of i is divisible by 3
        if (i % 2 == 0 && sumOfDigits(i) % 3 == 0)
            count++;
    }
 
    // Return the required count
    return count;
}
 
// Driver code
public static void main(String args[])
{
    int l = 1000, r = 6000;
    System.out.println(countNumbers(l, r));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# python implementation of the approach
 
# Function to return the
# sum of digits of x
def sumOfDigits(x):
    sum = 0
    while x != 0:
        sum += x % 10
        x = x//10
    return sum
 
 
# Function to return the count
# of required numbers
def countNumbers(l, r):
    count = 0
    for i in range(l, r + 1):
 
        # If i is divisible by 2 and
        # sum of digits of i is divisible by 3
        if i % 2 == 0 and sumOfDigits(i) % 3 == 0:
            count += 1
    return count
 
# Driver code
l = 1000; r = 6000
print(countNumbers(l, r))
 
# This code is contributed by Shrikant13


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the
// sum of digits of x
static int sumOfDigits(int x)
{
    int sum = 0;
    while (x != 0)
    {
        sum += x % 10;
        x = x / 10;
    }
    return sum;
}
 
// Function to return the count
// of required numbers
static int countNumbers(int l, int r)
{
    int count = 0;
    for (int i = l; i <= r; i++)
    {
 
        // If i is divisible by 2 and
        // sum of digits of i is divisible by 3
        if (i % 2 == 0 && sumOfDigits(i) % 3 == 0)
            count++;
    }
 
    // Return the required count
    return count;
}
 
// Driver code
public static void Main()
{
    int l = 1000, r = 6000;
    Console.WriteLine(countNumbers(l, r));
}
}
 
// This code is contributed by Code_Mech.


PHP




<?php
// PHP implementation of the approach
 
// Function to return the sum of
// digits of x
function sumOfDigits( $x)
{
    $sum = 0;
    while ($x != 0)
    {
        $sum += $x % 10;
        $x = $x / 10;
    }
    return $sum;
}
 
// Function to return the count
// of required numbers
function countNumbers($l, $r)
{
    $count = 0;
    for ($i = $l; $i <= $r; $i++)
    {
 
        // If i is divisible by 2 and
        // sum of digits of i is divisible by 3
        if ($i % 2 == 0 &&
            sumOfDigits($i) % 3 == 0)
            $count++;
    }
 
    // Return the required count
    return $count;
}
 
// Driver code
$l = 1000;
$r = 6000;
echo countNumbers($l, $r);
 
// This code is contributed by princiraj1992
?>


Javascript




<script>
// JavaScript implementation of the approach
 
// Function to return the
// sum of digits of x
function sumOfDigits(x)
{
    let sum = 0;
    while (x != 0) {
        sum += x % 10;
        x = Math.floor(x / 10);
    }
    return sum;
}
 
// Function to return the count
// of required numbers
function countNumbers(l, r)
{
    let count = 0;
    for (let i = l; i <= r; i++) {
 
        // If i is divisible by 2 and
        // sum of digits of i is divisible by 3
        if (i % 2 == 0 && sumOfDigits(i) % 3 === 0)
            count++;
    }
 
    // Return the required count
    return count;
}
 
// Driver code
    let l = 1000, r = 6000;
    document.write(countNumbers(l, r));
 
// This code is contributed by Manoj.
</script>


Output: 

834

 

Time Complexity: O(r – l), as we are traversing from l to r.

Auxiliary Space: O(1), as we are not using any extra space.
Efficient approach: 
 

  1. We have to check that the number is divisible by 2.
  2. We have to check that the sum of digit is divisible by 3 which means that the number is divisible by 3.

So overall we have to check if a number is divisible by both 2 and 3, and since both 2 and 3 are co prime so we just have to check if a number is divisible by their product i.e. 6.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of required numbers
int countNumbers(int l, int r)
{
 
    // Count of numbers in range
    // which are divisible by 6
    return ((r / 6) - (l - 1) / 6);
}
 
// Driver code
int main()
{
    int l = 1000, r = 6000;
    cout << countNumbers(l, r);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count
// of required numbers
static int countNumbers(int l, int r)
{
 
    // Count of numbers in range
    // which are divisible by 6
    return ((r / 6) - (l - 1) / 6);
}
 
// Driver code
public static void main(String[] args)
{
    int l = 1000, r = 6000;
    System.out.println(countNumbers(l, r));
}
}
 
// This code is contributed by princiraj1992


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of required numbers
def countNumbers(l, r) :
 
    # Count of numbers in range
    # which are divisible by 6
    return ((r // 6) - (l - 1) // 6);
 
# Driver code
if __name__ == "__main__" :
 
    l = 1000; r = 6000;
    print(countNumbers(l, r));
 
# This code is contributed by Ryuga


C#




// C# implementation of the above approach
using System;    
 
class GFG
{
 
// Function to return the count
// of required numbers
static int countNumbers(int l, int r)
{
 
    // Count of numbers in range
    // which are divisible by 6
    return ((r / 6) - (l - 1) / 6);
}
 
// Driver code
public static void Main(String[] args)
{
    int l = 1000, r = 6000;
    Console.WriteLine(countNumbers(l, r));
}
}
 
// This code contributed by Rajput-Ji


PHP




<?php
// PHP implementation of the approach
 
// Function to return the count
// of required numbers
function countNumbers($l, $r)
{
 
    // Count of numbers in range
    // which are divisible by 6
    return ((int)($r / 6) -
            (int)(($l - 1) / 6));
}
 
// Driver code
$l = 1000; $r = 6000;
echo(countNumbers($l, $r));
 
// This code is contributed
// by Code_Mech.
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of required numbers
function countNumbers(l, r)
{
 
    // Count of numbers in range
    // which are divisible by 6
    return (parseInt(r / 6) - parseInt((l - 1) / 6));
}
 
// Driver code
var l = 1000, r = 6000;
document.write(countNumbers(l, r));
 
</script>


Output: 

834

 

Time Complexity: O(1), as we are not traversing or using any loops.
 Auxiliary Space: O(1), as we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments