Given two integers L and R. The task is to find the count of all even numbers in the range [L, R] whose sum of digits is divisible by 3.
Examples:
Input: L = 18, R = 36
Output: 4
18, 24, 30, 36 are the only numbers in the range [18, 36] which are even and whose sum of digits is divisible by 3.
Input: L = 7, R = 11
Output: 0
There is no number in the range [7, 11] which is even and whose sum of digits is divisible by 3.
Naive approach: Initialize count = 0 and for every number in the range [L, R], check if the number is divisible by 2 and sum of its digits is divisible by 3. If yes then increment the count. Print the count in the end.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int sumOfDigits( int x)
{
int sum = 0;
while (x != 0) {
sum += x % 10;
x = x / 10;
}
return sum;
}
int countNumbers( int l, int r)
{
int count = 0;
for ( int i = l; i <= r; i++) {
if (i % 2 == 0 && sumOfDigits(i) % 3 == 0)
count++;
}
return count;
}
int main()
{
int l = 1000, r = 6000;
cout << countNumbers(l, r);
return 0;
}
|
Java
class GFG
{
static int sumOfDigits( int x)
{
int sum = 0 ;
while (x != 0 )
{
sum += x % 10 ;
x = x / 10 ;
}
return sum;
}
static int countNumbers( int l, int r)
{
int count = 0 ;
for ( int i = l; i <= r; i++)
{
if (i % 2 == 0 && sumOfDigits(i) % 3 == 0 )
count++;
}
return count;
}
public static void main(String args[])
{
int l = 1000 , r = 6000 ;
System.out.println(countNumbers(l, r));
}
}
|
Python3
def sumOfDigits(x):
sum = 0
while x ! = 0 :
sum + = x % 10
x = x / / 10
return sum
def countNumbers(l, r):
count = 0
for i in range (l, r + 1 ):
if i % 2 = = 0 and sumOfDigits(i) % 3 = = 0 :
count + = 1
return count
l = 1000 ; r = 6000
print (countNumbers(l, r))
|
C#
using System;
class GFG
{
static int sumOfDigits( int x)
{
int sum = 0;
while (x != 0)
{
sum += x % 10;
x = x / 10;
}
return sum;
}
static int countNumbers( int l, int r)
{
int count = 0;
for ( int i = l; i <= r; i++)
{
if (i % 2 == 0 && sumOfDigits(i) % 3 == 0)
count++;
}
return count;
}
public static void Main()
{
int l = 1000, r = 6000;
Console.WriteLine(countNumbers(l, r));
}
}
|
PHP
<?php
function sumOfDigits( $x )
{
$sum = 0;
while ( $x != 0)
{
$sum += $x % 10;
$x = $x / 10;
}
return $sum ;
}
function countNumbers( $l , $r )
{
$count = 0;
for ( $i = $l ; $i <= $r ; $i ++)
{
if ( $i % 2 == 0 &&
sumOfDigits( $i ) % 3 == 0)
$count ++;
}
return $count ;
}
$l = 1000;
$r = 6000;
echo countNumbers( $l , $r );
?>
|
Javascript
<script>
function sumOfDigits(x)
{
let sum = 0;
while (x != 0) {
sum += x % 10;
x = Math.floor(x / 10);
}
return sum;
}
function countNumbers(l, r)
{
let count = 0;
for (let i = l; i <= r; i++) {
if (i % 2 == 0 && sumOfDigits(i) % 3 === 0)
count++;
}
return count;
}
let l = 1000, r = 6000;
document.write(countNumbers(l, r));
</script>
|
Time Complexity: O(r – l), as we are traversing from l to r.
Auxiliary Space: O(1), as we are not using any extra space.
Efficient approach:
- We have to check that the number is divisible by 2.
- We have to check that the sum of digit is divisible by 3 which means that the number is divisible by 3.
So overall we have to check if a number is divisible by both 2 and 3, and since both 2 and 3 are co prime so we just have to check if a number is divisible by their product i.e. 6.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int countNumbers( int l, int r)
{
return ((r / 6) - (l - 1) / 6);
}
int main()
{
int l = 1000, r = 6000;
cout << countNumbers(l, r);
return 0;
}
|
Java
class GFG
{
static int countNumbers( int l, int r)
{
return ((r / 6 ) - (l - 1 ) / 6 );
}
public static void main(String[] args)
{
int l = 1000 , r = 6000 ;
System.out.println(countNumbers(l, r));
}
}
|
Python3
def countNumbers(l, r) :
return ((r / / 6 ) - (l - 1 ) / / 6 );
if __name__ = = "__main__" :
l = 1000 ; r = 6000 ;
print (countNumbers(l, r));
|
C#
using System;
class GFG
{
static int countNumbers( int l, int r)
{
return ((r / 6) - (l - 1) / 6);
}
public static void Main(String[] args)
{
int l = 1000, r = 6000;
Console.WriteLine(countNumbers(l, r));
}
}
|
PHP
<?php
function countNumbers( $l , $r )
{
return ((int)( $r / 6) -
(int)(( $l - 1) / 6));
}
$l = 1000; $r = 6000;
echo (countNumbers( $l , $r ));
?>
|
Javascript
<script>
function countNumbers(l, r)
{
return (parseInt(r / 6) - parseInt((l - 1) / 6));
}
var l = 1000, r = 6000;
document.write(countNumbers(l, r));
</script>
|
Time Complexity: O(1), as we are not traversing or using any loops.
Auxiliary Space: O(1), as we are not using any extra space.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!