Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount of all cycles without any inner cycle in a given Graph

Count of all cycles without any inner cycle in a given Graph

Given an undirected graph consisting of N vertices numbered [0, N-1] and E edges, the task is to count the number of cycles such that any subset of vertices of a cycle does not form another cycle.
Examples: 
 

Input: N = 2, E = 2, edges = [{0, 1}, {1, 0}] 
Output:
Explanation: 
Only one cycle exists between the two vertices. 
 

Input: N = 6, E = 9, edges = [{0, 1}, {1, 2}, {0, 2}, {3, 0}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 0}] 
Output:
Explanation: 
The possible cycles are shown in the diagram below: 
 

Example 2 Image

Cycles such as 5 -> 0 -> 2 -> 1 -> 5 are not considered as it comprises of inner cycles {5 -> 0 -> 1} and {0 -> 1 -> 2} 
 

Approach: 
Since V vertices require V edges to form 1 cycle, the number of required cycles can be expressed using the formula: 
 

(Edges - Vertices) + 1

Illustration: 
 

N = 6, E = 9, edges = [{0, 1}, {1, 2}, {0, 2}, {3, 0}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 0}] 
Number of Cycles = 9 – 6 + 1 = 4 
The 4 cycles in the graph are: 
{5, 0, 1}, {0, 1, 2}, {3, 0, 2} and {1, 2, 4} 
 

This formula also covers the case when a single vertex may have a self-loop. 
Below is the implementation of the above approach: 
 

C++




// C++ implementation for the
// above approach.
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// count of required cycles
int numberOfCycles(int N, int E,
                   int edges[][2])
{
    vector<int> graph[N];
    for (int i = 0; i < E; i++) {
        graph[edges[i][0]]
            .push_back(edges[i][1]);
        graph[edges[i][1]]
            .push_back(edges[i][0]);
    }
 
    // Return the number of cycles
    return (E - N) + 1;
}
 
// Driver Code
int main()
{
    int N = 6;
    int E = 9;
    int edges[][2] = { { 0, 1 },
                       { 1, 2 },
                       { 2, 0 },
                       { 5, 1 },
                       { 5, 0 },
                       { 3, 0 },
                       { 3, 2 },
                       { 4, 2 },
                       { 4, 1 } };
    int k = numberOfCycles(N, E,
                           edges);
 
    cout << k << endl;
    return 0;
}


Java




// Java implementation for the
// above approach.
import java.util.*;
 
class GFG{
 
// Function to return the
// count of required cycles
static int numberOfCycles(int N, int E,
                          int edges[][])
{
    @SuppressWarnings("unchecked")
    Vector<Integer> []graph = new Vector[N];
    for(int i = 0; i < N; i++)
        graph[i] = new Vector<Integer>();
         
    for(int i = 0; i < E; i++)
    {
        graph[edges[i][0]].add(edges[i][1]);
        graph[edges[i][1]].add(edges[i][0]);
    }
 
    // Return the number of cycles
    return (E - N) + 1;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 6;
    int E = 9;
    int edges[][] = { { 0, 1 },
                      { 1, 2 },
                      { 2, 0 },
                      { 5, 1 },
                      { 5, 0 },
                      { 3, 0 },
                      { 3, 2 },
                      { 4, 2 },
                      { 4, 1 } };
                       
    int k = numberOfCycles(N, E, edges);
 
    System.out.print(k + "\n");
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 implementation for the
# above approach.
  
# Function to return the
# count of required cycles
def numberOfCycles(N, E, edges):
 
    graph=[[] for i in range(N)]
     
    for i in range(E):
     
        graph[edges[i][0]].append(edges[i][1]);
        graph[edges[i][1]].append(edges[i][0]);
  
    # Return the number of cycles
    return (E - N) + 1;
  
# Driver Code
if __name__=='__main__':
     
    N = 6;
    E = 9;
    edges = [ [ 0, 1 ],
                       [ 1, 2 ],
                       [ 2, 0 ],
                       [ 5, 1 ],
                       [ 5, 0 ],
                       [ 3, 0 ],
                       [ 3, 2 ],
                       [ 4, 2 ],
                       [ 4, 1 ] ];
     
    k = numberOfCycles(N, E,edges);
    print(k)
     
    # This code is contributed by rutvik_56


C#




// C# implementation for the
// above approach.
using System;
using System.Collections.Generic;
class GFG{
 
// Function to return the
// count of required cycles
static int numberOfCycles(int N, int E,
                          int [,]edges)
{
 
    List<int> []graph = new List<int>[N];
    for(int i = 0; i < N; i++)
        graph[i] = new List<int>();
         
    for(int i = 0; i < E; i++)
    {
        graph[edges[i, 0]].Add(edges[i, 1]);
        graph[edges[i, 1]].Add(edges[i, 0]);
    }
 
    // Return the number of cycles
    return (E - N) + 1;
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 6;
    int E = 9;
    int [,]edges = { { 0, 1 }, { 1, 2 },
                     { 2, 0 }, { 5, 1 },
                     { 5, 0 }, { 3, 0 },
                     { 3, 2 }, { 4, 2 },
                     { 4, 1 } };
                       
    int k = numberOfCycles(N, E, edges);
 
    Console.Write(k + "\n");
}
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
 
// JavaScript implementation for the
// above approach.
 
// Function to return the
// count of required cycles
function numberOfCycles(N, E, edges)
{
    var graph = Array.from(Array(N), ()=> Array());
    for (var i = 0; i < E; i++) {
        graph[edges[i][0]]
            .push(edges[i][1]);
        graph[edges[i][1]]
            .push(edges[i][0]);
    }
 
    // Return the number of cycles
    return (E - N) + 1;
}
 
// Driver Code
var N = 6;
var E = 9;
var edges = [ [ 0, 1 ],
                   [ 1, 2 ],
                   [ 2, 0 ],
                   [ 5, 1 ],
                   [ 5, 0 ],
                   [ 3, 0 ],
                   [ 3, 2 ],
                   [ 4, 2 ],
                   [ 4, 1 ] ];
                    
var k = numberOfCycles(N, E,
                       edges);
document.write( k);
 
</script>


Output: 

4

 

Time Complexity: O(E) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments