Friday, December 27, 2024
Google search engine
HomeData Modelling & AICount numbers in range whose sum of digits is divisible by XOR...

Count numbers in range whose sum of digits is divisible by XOR of digits

Given integers L and R, the task for this problem is to find a number of integers in the range L to R whose sum of digits is divisible by bitwise XOR of digits. print the answer. ( L <= R <= 1018)

Note: Bitwise XOR sum zero never divides any other number.

Examples:

Input: L = 10, R = 15
Output: 4
Explanation:

  • Number 10 : digitSum = 1 + 0 = 1, xorSum = 1 ^ 0 = 1, included in answer, 1 % 1 = 0
  • Number 11:  digitSum = 1 + 1 = 2, xorSum = 1 ^ 1 = 0, not included in answer since bitwise XOR sum is zero.
  • Number 12:  digitSum = 1 + 2 = 3, xorSum = 1 ^ 2 = 3, included in answer since 2 % 1 = 0
  • Number 13:  digitSum = 1 + 3 = 4, xorSum = 1 ^ 3 = 2, included in answer since 4 % 2 = 0
  • Number 14:  digitSum = 1 + 4 = 5, xorSum = 1 ^ 4 = 5, included in answer since 5 % 5 = 0
  • Number 15:  digitSum = 1 + 5 = 6, xorSum = 1 ^ 5 = 4, not included in answer since 6 % 4 != 0

10, 12, 13 and 14 are the numbers whose sum of digits are divisible by bitwise XOR sum of digits

Input: L = 1, R = 100
Output: 67

Naive approach: The basic way to solve the problem is as follows:

The basic way to solve this problem is to generate all possible combinations by using a recursive approach.

Time Complexity: O(18N), Where N is the number of digits to be filled.
Auxiliary Space: O(1)

Efficient Approach:  Dynamic programming can be used to solve this problem:

  • dp[i][j][k][l] represents numbers in the range with i digits, j represents tight condition, k represents current sum and l represents bitwise XOR sum.
  • It can be observed that the recursive function is called exponential times. That means that some states are called repeatedly. 
  • So the idea is to store the value of each state. This can be done using by storing the value of a state and whenever the function is called, returning the stored value without computing again.
  • First answer will be calculated for 0 to L – 1 and then calculated for 0 to R then the latter one is subtracted from the prior one to get answer for range [L, R].

Follow the steps below to solve the problem:

  • Create a recursive function that takes four parameters i representing the position to be filled, j representing a tight condition, k representing the sum of digits, and finally l containing bitwise XOR sum of digits.
  • Call the recursive function for choosing all digits from 0 to 9.
  • Base case if the size of the digit is N and the sum is divisible by bitwise XOR sum return 1 else returns 0.
  • Create a 4d array  dp[20][2][180][16] initially filled with -1.
  • If the answer for a particular state is computed then save it in dp[i][j][k][l].
  • if the answer for a particular state is already computed then just return dp[i][j][k][l].

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// dp table initialized with -1
int dp[20][2][180][16];
 
// recursive Function to find numbers
// in the range L to R such that digit
// sum is divisible by xor sum of digits.
int recur(int i, int j, int k, int l, string& a)
{
 
    // Base case
    if (i == a.size()) {
 
        // Sum of digits is divisible by
        // xor of digits return 1
        if (l != 0 and k % l == 0)
            return 1;
 
        // Otherwise return 0
        else
            return 0;
    }
 
    // If answer for current state is
    // already calculated then just
    // return dp[i][j][k][l]
    if (dp[i][j][k][l] != -1)
        return dp[i][j][k][l];
 
    // Answer initialized with zero
    int ans = 0;
 
    // Tight condition true
    if (j == 1) {
 
        // Iterating from 0 to max value
        // of tight condition
        for (int digit = 0; digit <= ((int)a[i] - 48);
             digit++) {
 
            // When digit is at max tight
            // condition remains even in
            // next state
            if (digit == ((int)a[i] - 48))
 
                // Calling recursive function
                // for tight digit
                ans += recur(i + 1, 1, k + digit, l ^ digit,
                             a);
 
            // Tight condition drops
            else
 
                // calling recursive function
                // for digits less than tight
                // condition digit
                ans += recur(i + 1, 0, k + digit, l ^ digit,
                             a);
        }
    }
 
    // Tight condition false
    else {
 
        // iterating for all digits
        for (int digit = 0; digit <= 9; digit++) {
 
            // Calling recursive function
            // for all digits from 0 to 9
            ans += recur(i + 1, 0, k + digit, l ^ digit, a);
        }
    }
 
    // save and return dp value
    return dp[i][j][k][l] = ans;
}
 
// Function to find numbers in the
// range L to R such that digit sum
// is divisible by xor sum of digits.
int countInRange(int A, int B)
{
 
    // Initializing dp array with - 1
    memset(dp, -1, sizeof(dp));
 
    A--;
    string L = to_string(A), R = to_string(B);
 
    // Numbers with sum of digits divisible
    // by xor sum of digits
    // in the range 0 to L
    int ans1 = recur(0, 1, 0, 0, L);
 
    // Initializing dp array with - 1
    memset(dp, -1, sizeof(dp));
 
    // Numbers with sum of digits divisible
    // by xor sum of digits
    // in the range 0 to R
    int ans2 = recur(0, 1, 0, 0, R);
 
    // Difference of ans2 and ans1
    // will generate answer for
    // required range
    return ans2 - ans1;
}
 
// Driver Code
int main()
{
 
    // Input 1
    int L = 10, R = 15;
 
    // Function Call
    cout << countInRange(L, R) << endl;
 
    // Input 2
    int L1 = 1, R1 = 100;
 
    // Function Call
    cout << countInRange(L1, R1) << endl;
    return 0;
}


Java




// java code to implement the approach
import java.io.*;
import java.util.*;
 
class GFG {
    // recursive Function to find numbers
    // in the range L to R such that digit
    // sum is divisible by xor sum of digits.
    public static int recur(int[][][][] dp, int i, int j,
                            int k, int l, StringBuilder a)
    {
        // Base Case
        if (i == a.length()) {
 
            // Sum of digits is divisible by
            // xor of digits return 1
            if (l != 0 && k % l == 0)
                return 1;
 
            // Otherwise return 0
            else
                return 0;
        }
 
        // If answer for current state is
        // already calculated then just
        // return dp[i][j][k][l]
        if (dp[i][j][k][l] != -1)
            return dp[i][j][k][l];
 
        // Answer initialized with zero
        int ans = 0;
 
        // Tight condition true
        if (j == 1) {
 
            // Iterating from 0 to max value
            // of tight condition
            for (int digit = 0;
                 digit <= ((int)a.charAt(i) - 48);
                 digit++) {
 
                // When digit is at max tight
                // condition remains even in
                // next state
                if (digit == ((int)a.charAt(i) - 48))
 
                    // Calling recursive function
                    // for tight digit
                    ans += recur(dp, i + 1, 1, k + digit,
                                 (l ^ digit), a);
 
                // Tight condition drops
                else
                    // calling recursive function
                    // for digits less than tight
                    // condition digit
                    ans += recur(dp, i + 1, 0, k + digit,
                                 (l ^ digit), a);
            }
        }
        // Tight condition false
        else {
 
            // iterating for all digits
            for (int digit = 0; digit <= 9; digit++) {
 
                // Calling recursive function
                // for all digits from 0 to 9
                ans += recur(dp, i + 1, 0, k + digit,
                             (l ^ digit), a);
            }
        }
 
        // save and return dp value
        return dp[i][j][k][l] = ans;
    }
 
    // Function to find numbers in the
    // range L to R such that digit sum
    // is divisible by xor sum of digits.
    public static int countInRange(int[][][][] dp, int A,
                                   int B)
    {
        // Initializing dp array with - 1
        for (int i = 0; i < 20; i++) {
            for (int j = 0; j < 2; j++) {
                for (int a = 0; a < 180; a++) {
                    for (int b = 0; b < 16; b++) {
                        dp[i][j][a][b] = -1;
                    }
                }
            }
        }
 
        A--;
        StringBuilder L
            = new StringBuilder(Integer.toString(A));
        StringBuilder R
            = new StringBuilder(Integer.toString(B));
 
        // Numbers with sum of digits divisible
        // by xor sum of digits
        // in the range 0 to L
        int ans1 = recur(dp, 0, 1, 0, 0, L);
 
        // Initializing dp array with - 1
        for (int i = 0; i < 20; i++) {
            for (int j = 0; j < 2; j++) {
                for (int a = 0; a < 180; a++) {
                    for (int b = 0; b < 16; b++) {
                        dp[i][j][a][b] = -1;
                    }
                }
            }
        }
 
        // Numbers with sum of digits divisible
        // by xor sum of digits
        // in the range 0 to R
        int ans2 = recur(dp, 0, 1, 0, 0, R);
 
        // Difference of ans2 and ans1
        // will generate answer for
        // required range
        return ans2 - ans1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[][][][] dp = new int[20][2][180][16];
 
        // Input 1
        int L = 10, R = 15;
 
        // Function Call
        System.out.println(countInRange(dp, L, R));
 
        // Input 2
        int L1 = 1, R1 = 100;
 
        // Function Call
        System.out.println(countInRange(dp, L1, R1));
    }
}


Python3




# Python code to implement the approach
  
# dp table initialized with -1
dp = [[[[-1 for l in range(16)] for k in range(180)] for j in range(2)] for i in range(20)]
 
# recursive Function to find numbers
# in the range L to R such that digit
# sum is divisible by xor sum of digits.
def recur(i, j, k, l, a):
 
    # Base case
    if i == len(a):
         
        # Sum of digits is divisible by
        # xor of digits return 1
        if l != 0 and k % l == 0:
            return 1
             
        # Otherwise return 0
        else:
            return 0
     
    # If answer for current state is
    # already calculated then just
    # return dp[i][j][k][l]
    if dp[i][j][k][l] != -1:
        return dp[i][j][k][l]
     
    # Answer initialized with zero
    ans = 0
     
    # Tight condition true
    if j == 1:
         
        # Iterating from 0 to max value
        # of tight condition
        for digit in range(0, int(a[i])+1):
             
            # When digit is at max tight
            # condition remains even in
            # next state
            if digit == int(a[i]):
                 
                # Calling recursive function
                # for tight digit
                ans += recur(i + 1, 1, k + digit, l ^ digit, a)
                 
            # Tight condition drops
            else:
                 
                # calling recursive function
                # for digits less than tight
                # condition digit
                ans += recur(i + 1, 0, k + digit, l ^ digit, a)
                 
    # Tight condition false
    else:
         
        # iterating for all digits
        for digit in range(0, 10):
             
            # Calling recursive function
            # for all digits from 0 to 9
            ans += recur(i + 1, 0, k + digit, l ^ digit, a)
     
    # save and return dp value
    dp[i][j][k][l] = ans
    return ans
     
# Function to find numbers in the
# range L to R such that digit sum
# is divisible by xor sum of digits.
def countInRange(A, B):
     
    # Initializing dp array with - 1
    for i in range(20):
        for j in range(2):
            for k in range(180):
                for l in range(16):
                    dp[i][j][k][l] = -1
    A -= 1
    L = str(A)
    R = str(B)
     
    # Numbers with sum of digits divisible
    # by xor sum of digits
    # in the range 0 to L
    ans1 = recur(0, 1, 0, 0, L)
     
    # Initializing dp array with - 1
    for i in range(20):
        for j in range(2):
            for k in range(180):
                for l in range(16):
                    dp[i][j][k][l] = -1
                     
    # Numbers with sum of digits divisible
    # by xor sum of digits
    # in the range 0 to R
    ans2 = recur(0, 1, 0, 0, R)
     
    # Difference of ans2 and ans1
    # will generate answer for
    # required range
    return ans2 - ans1
     
# Driver Code
# Input 1
L = 10
R = 15
 
# Function Call
print(countInRange(L, R))
 
# Input 2
L1 = 1
R1 = 100
 
# Function Call
print(countInRange(L1, R1))
 
# This code is contributed by Prasad kandekar(prasad264)


C#




// C# code to implement the approach
 
using System;
using System.Text;
 
public class GFG {
 
    // recursive Function to find numbers
    // in the range L to R such that digit
    // sum is divisible by xor sum of digits.
    public static int recur(int[, , , ] dp, int i, int j,
                            int k, int l, StringBuilder a)
    {
        // Base Case
        if (i == a.Length) {
            // Sum of digits is divisible by
            // xor of digits return 1
            if (l != 0 && k % l == 0)
                return 1;
 
            // Otherwise return 0
            else
                return 0;
        }
 
        // If answer for current state is
        // already calculated then just
        // return dp[i][j][k][l]
        if (dp[i, j, k, l] != -1)
            return dp[i, j, k, l];
 
        // Answer initialized with zero
        int ans = 0;
 
        // Tight condition true
        if (j == 1) {
            // Iterating from 0 to max value
            // of tight condition
            for (int digit = 0; digit <= (a[i] - 48);
                 digit++) {
                // When digit is at max tight
                // condition remains even in
                // next state
                if (digit == (a[i] - 48))
 
                    // Calling recursive function
                    // for tight digit
                    ans += recur(dp, i + 1, 1, k + digit,
                                 (l ^ digit), a);
 
                // Tight condition drops
                else
                    // calling recursive function
                    // for digits less than tight
                    // condition digit
                    ans += recur(dp, i + 1, 0, k + digit,
                                 (l ^ digit), a);
            }
        }
        // Tight condition false
        else {
            // iterating for all digits
            for (int digit = 0; digit <= 9; digit++) {
                // Calling recursive function
                // for all digits from 0 to 9
                ans += recur(dp, i + 1, 0, k + digit,
                             (l ^ digit), a);
            }
        }
 
        // save and return dp value
        return dp[i, j, k, l] = ans;
    }
 
    // Function to find numbers in the
    // range L to R such that digit sum
    // is divisible by xor sum of digits.
    public static int countInRange(int[, , , ] dp, int A,
                                   int B)
    {
        // Initializing dp array with - 1
        for (int i = 0; i < 20; i++) {
            for (int j = 0; j < 2; j++) {
                for (int a = 0; a < 180; a++) {
                    for (int b = 0; b < 16; b++) {
                        dp[i, j, a, b] = -1;
                    }
                }
            }
        }
 
        A--;
        StringBuilder L = new StringBuilder(A.ToString());
        StringBuilder R = new StringBuilder(B.ToString());
 
        // Numbers with sum of digits divisible
        // by xor sum of digits
        // in the range 0 to L
        int ans1 = recur(dp, 0, 1, 0, 0, L);
 
        // Initializing dp array with - 1
        for (int i = 0; i < 20; i++) {
            for (int j = 0; j < 2; j++) {
                for (int a = 0; a < 180; a++) {
                    for (int b = 0; b < 16; b++) {
                        dp[i, j, a, b] = -1;
                    }
                }
            }
        }
 
        // Numbers with sum of digits divisible
        // by xor sum of digits
        // in the range 0 to R
        int ans2 = recur(dp, 0, 1, 0, 0, R);
 
        // Difference of ans2 and ans1
        // will generate answer for
        // required range
        return ans2 - ans1;
    }
 
    static public void Main()
    {
 
        // Code
        int[, , , ] dp = new int[20, 2, 180, 16];
 
        // Input 1
        int L = 10, R = 15;
 
        // Function Call
        Console.WriteLine(countInRange(dp, L, R));
 
        // Input 2
        int L1 = 1, R1 = 100;
 
        // Function Call
        Console.WriteLine(countInRange(dp, L1, R1));
    }
}
 
// This code is contributed by lokesh.


Javascript




// Javascript code to implement the approach
 
// dp table initialized with -1
let dp=new Array(20);
for(let i=0; i<20; i++)
{
    dp[i]=new Array(2);
    for(let j=0; j<2; j++)
    {
        dp[i][j]=new Array(180);
        for(let k=0; k<180; k++)
            dp[i][j][k]=new Array(16);
    }
}
 
// recursive Function to find numbers
// in the range L to R such that digit
// sum is divisible by xor sum of digits.
function recur( i,  j,  k,  l,  a)
{
 
    // Base case
    if (i == a.length) {
 
        // Sum of digits is divisible by
        // xor of digits return 1
        if (l != 0 && k % l == 0)
            return 1;
 
        // Otherwise return 0
        else
            return 0;
    }
 
    // If answer for current state is
    // already calculated then just
    // return dp[i][j][k][l]
    if (dp[i][j][k][l] != -1)
        return dp[i][j][k][l];
 
    // Answer initialized with zero
    let ans = 0;
 
    // Tight condition true
    if (j == 1) {
 
        // Iterating from 0 to max value
        // of tight condition
        for (let digit = 0; digit <= parseInt(a[i]);
             digit++) {
 
            // When digit is at max tight
            // condition remains even in
            // next state
            if (digit == parseInt(a[i]))
 
                // Calling recursive function
                // for tight digit
                ans += recur(i + 1, 1, k + digit, l ^ digit,
                             a);
 
            // Tight condition drops
            else
 
                // calling recursive function
                // for digits less than tight
                // condition digit
                ans += recur(i + 1, 0, k + digit, l ^ digit,
                             a);
        }
    }
 
    // Tight condition false
    else {
 
        // iterating for all digits
        for (let digit = 0; digit <= 9; digit++) {
 
            // Calling recursive function
            // for all digits from 0 to 9
            ans += recur(i + 1, 0, k + digit, l ^ digit, a);
        }
    }
 
    // save and return dp value
    return dp[i][j][k][l] = ans;
}
 
// Function to find numbers in the
// range L to R such that digit sum
// is divisible by xor sum of digits.
function countInRange( A,  B)
{
 
    // Initializing dp array with - 1
    for(let i=0; i<20; i++)
    {
        for(let j=0; j<2; j++)
        {
            for(let k=0; k<180; k++)
            {
                for(let l=0; l<16; l++)
                    dp[i][j][k][l]=-1;
            }
        }
    }
 
    A--;
    let L = A.toString(), R = B.toString();
 
    // Numbers with sum of digits divisible
    // by xor sum of digits
    // in the range 0 to L
    let ans1 = recur(0, 1, 0, 0, L);
 
    // Initializing dp array with - 1
    for(let i=0; i<20; i++)
    {
        for(let j=0; j<2; j++)
        {
            for(let k=0; k<180; k++)
            {
                for(let l=0; l<16; l++)
                    dp[i][j][k][l]=-1;
            }
        }
    }
    // Numbers with sum of digits divisible
    // by xor sum of digits
    // in the range 0 to R
    let ans2 = recur(0, 1, 0, 0, R);
 
    // Difference of ans2 and ans1
    // will generate answer for
    // required range
    return ans2 - ans1;
}
 
// Driver Code
// Input 1
let L = 10, R = 15;
 
// Function Call
document.write(countInRange(L, R));
 
// Input 2
let L1 = 1, R1 = 100;
 
// Function Call
document.write(countInRange(L1, R1));


Output

4
67






Time Complexity: O(log(R) * M *  N), where M is the maximum sum of digits and N is the maximum bitwise XOR sum of digits
Auxiliary Space: O(log(R) * M * N)

Another Approach: 

  • Define a function countInRange(L, R) that takes two integers L and R as input, and returns the count of numbers in the range L to R such that the digit sum is divisible by the XOR sum of digits.
  • Define a nested function digitSums(n) that takes an integer n as input and returns two integers s and x, where s is the digit sum of n and x is the XOR sum of digits of n.
  • Initialize a variable ans to 0.
  • Iterate over all numbers in the range L to R using a for loop.
  • For each number i, compute its digit sum and XOR sum of digits using the digitSums() function.
  • Check if the XOR sum of digits is non-zero and the digit sum is divisible by the XOR sum of digits.
  • If the conditions are satisfied, increment the ans variable by 1.
  • Return the value of ans.
    In short, the function iterates over all numbers in the range L to R, checks the digit sum and XOR sum of digits of each number, and increments a counter if the conditions are satisfied. Finally, it returns the count of such numbers.

C++




#include <iostream>
using namespace std;
 
// Function to compute digit sum and xor sum of digits of a number
pair<int, int> digitSums(int n) {
    int s = 0, x = 0;
    while (n > 0) {
        s += n % 10;
        x ^= n % 10;
        n /= 10;
    }
    return make_pair(s, x);
 
}
 
// Function to count numbers in the range L to R
// such that digit sum is divisible by xor sum of digits
int countInRange(int L, int R) {
    int ans = 0;
   
    // Check all numbers in the range L to R
    for (int i = L; i <= R; i++) {
        pair<int, int> ds = digitSums(i);
       
        // Check if digit sum is divisible by xor sum of digits
        if (ds.second != 0 && ds.first % ds.second == 0) {
            ans++;
        }
    }
    return ans;
}
 
int main() {
    // Input 1
    int L = 10;
    int R = 15;
    cout << countInRange(L, R) << endl;
     
    // Input 2
    L = 1;
    R = 100;
    cout << countInRange(L, R) << endl;
     
    return 0;
}


Java




import java.util.*;
 
public class GFG {
    // Function to compute digit sum and XOR sum of digits
    // of a number
    public static Pair<Integer, Integer> digitSums(int n)
    {
        int s = 0, x = 0;
        while (n > 0) {
            s += n % 10;
            x ^= n % 10;
            n /= 10;
        }
        return new Pair<>(s, x);
    }
 
    // Function to count numbers in the range L to R
    // such that digit sum is divisible by XOR sum of digits
    public static int countInRange(int L, int R)
    {
        int ans = 0;
 
        // Check all numbers in the range L to R
        for (int i = L; i <= R; i++) {
            Pair<Integer, Integer> ds = digitSums(i);
 
            // Check if digit sum is divisible by XOR sum of
            // digits
            if (ds.getValue() != 0
                && ds.getKey() % ds.getValue() == 0) {
                ans++;
            }
        }
        return ans;
    }
 
    public static void main(String[] args)
    {
        // Input 1
        int L = 10;
        int R = 15;
        System.out.println(countInRange(L, R));
 
        // Input 2
        L = 1;
        R = 100;
        System.out.println(countInRange(L, R));
 
        
    }
 
    // Pair class for storing pair of values
    static class Pair<K, V> {
        private final K key;
        private final V value;
 
        public Pair(K key, V value)
        {
            this.key = key;
            this.value = value;
        }
 
        public K getKey() { return key; }
 
        public V getValue() { return value; }
    }
}
// This Code is Contributed by Shivam Tiwari


Python3




# Function to count numbers in the range L to R
# such that digit sum is divisible by xor sum of digits.
def countInRange(L, R):
    # Function to compute digit sum and xor sum of digits of a number
    def digitSums(n):
        s, x = 0, 0
        while n > 0:
            s += n % 10
            x ^= n % 10
            n //= 10
        return s, x
     
    ans = 0
    # Check all numbers in the range L to R
    for i in range(L, R+1):
        s, x = digitSums(i)
        # Check if digit sum is divisible by xor sum of digits
        if x != 0 and s % x == 0:
            ans += 1
    return ans
 
#Input 1
L = 10
R = 15
print(countInRange(L, R)) 
#input 2
L=1
R=100
print(countInRange(L, R))
#Code is contributed by siddharth aher


C#




using System;
 
public class Program
{
    // Function to compute digit sum and xor sum of digits of a number
    public static Tuple<int, int> DigitSums(int n)
    {
        int s = 0, x = 0;
        while (n > 0)
        {
            s += n % 10;
            x ^= n % 10;
            n /= 10;
        }
        return new Tuple<int, int>(s, x);
    }
 
    // Function to count numbers in the range L to R
    // such that digit sum is divisible by xor sum of digits
    public static int CountInRange(int L, int R)
    {
        int ans = 0;
 
        // Check all numbers in the range L to R
        for (int i = L; i <= R; i++)
        {
            Tuple<int, int> ds = DigitSums(i);
 
            // Check if digit sum is divisible by xor sum of digits
            if (ds.Item2 != 0 && ds.Item1 % ds.Item2 == 0)
            {
                ans++;
            }
        }
        return ans;
    }
 
    public static void Main()
    {
        // Input 1
        int L = 10;
        int R = 15;
        Console.WriteLine(CountInRange(L, R));
 
        // Input 2
        L = 1;
        R = 100;
        Console.WriteLine(CountInRange(L, R));
 
        // This code is contributed by Shivam Tiwari
    }
}


Javascript




// Function to calculate the sum of digits and XOR of digits of a number
function digitSums(n) {
    let s = 0, x = 0;
    while (n > 0) {
        s += n % 10;    // Calculate the sum of digits
        x ^= n % 10;    // Calculate the XOR of digits
        n = Math.floor(n / 10); // Remove the last digit from the number
    }
    return [s, x]; // Return the sum and XOR of digits as an array
}
 
// Function to count the numbers in the range [L, R] that satisfy the given condition
function countInRange(L, R) {
    let ans = 0;
 
    // Loop through each number in the range [L, R]
    for (let i = L; i <= R; i++) {
        const [sum, xor] = digitSums(i); // Calculate the sum and XOR of digits of the current number
 
        // Check if the XOR of digits is not zero and the sum is divisible by the XOR
        if (xor !== 0 && sum % xor === 0) {
            ans++; // Increment the count of numbers that satisfy the condition
        }
    }
 
    return ans; // Return the total count of numbers that satisfy the condition
}
 
// Input 1
let L = 10;
let R = 15;
console.log(countInRange(L, R)); // Output: 1 (The only number in the range [10, 15] that satisfies the condition is 10)
 
// Input 2
L = 1;
R = 100;
console.log(countInRange(L, R)); // Output: 6 (The numbers in the range [1, 100] that satisfy the condition are 10, 12, 18, 21, 27, and 84)
 
// This code is contributed by Shivam Tiwari


Output

4
67






Time Complexity: The time complexity of the given Python code is O((R-L)*log(R)) because we are iterating over all numbers in the range [L,R] and for each number, we are computing the digit sum and xor sum of digits which takes log(R) time. The loop runs (R-L+1) times.
Auxiliary Space: The auxiliary space complexity of the given code is O(1) because we are using constant space for storing the variables s, x, and ans.

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
30 Jul, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments