Friday, January 3, 2025
Google search engine
HomeLanguagesDynamic ProgrammingCount numbers from 1 to n that have 4 as a...

Count numbers from 1 to n that have 4 as a digit

Given a number n, find count of all numbers from 1 to n that have 4 as a digit.

Examples : 

Input:   n = 5
Output:  1
Only 4 has '4' as digit

Input:   n = 50
Output:  14

Input:   n = 328
Output:  60

This problem is mainly a variation of previous article on Compute sum of digits in all numbers from 1 to n.

Recommended Practice

Naive Solution: A naive solution is to go through every number x from 1 to n, and check if x has 4. To check if x has or not, we can traverse all digits of x. Below is the implementation of above idea:

Implementation:

C++




// A Simple C++ program to compute sum of digits in numbers from 1 to n
#include<iostream>
using namespace std;
 
bool has4(int x);
 
// Returns sum of all digits in numbers from 1 to n
int countNumbersWith4(int n)
{
    int result = 0; // initialize result
 
    // One by one compute sum of digits in every number from
    // 1 to n
    for (int x=1; x<=n; x++)
        result += has4(x)? 1 : 0;
 
    return result;
}
 
// A utility function to compute sum of digits in a
// given number x
bool has4(int x)
{
    while (x != 0)
    {
        if (x%10 == 4)
           return true;
        x   = x /10;
    }
    return false;
}
 
// Driver Program
int main()
{
   int n = 328;
   cout << "Count of numbers from 1 to " << n
        << " that have 4 as a digit is "
        << countNumbersWith4(n) << endl;
   return 0;
}


Java




// Java program to compute sum of
// digits in numbers from 1 to n
import java.io.*;
 
class GFG {
     
    // Returns sum of all digits
    // in numbers from 1 to n
    static int countNumbersWith4(int n)
    {
        // initialize result
        int result = 0;
      
        // One by one compute sum of digits
        // in every number from 1 to n
        for (int x=1; x<=n; x++)
            result += has4(x)? 1 : 0;
      
        return result;
    }
     
    // A utility function to compute sum
    // of digits in a given number x
    static boolean has4(int x)
    {
        while (x != 0)
        {
            if (x%10 == 4)
               return true;
            x   = x /10;
        }
        return false;
    }
      
    // Driver Program
    public static void main(String args[])
    {
       int n = 328;
       System.out.println("Count of numbers from 1 to "
                          + " that have 4 as a digit is "
                          + countNumbersWith4(n)) ;
    }
}
 
// This code is contributed by Nikita Tiwari.


Python3




# A Simple Python 3 program to compute
# sum of digits in numbers from 1 to n
 
# Returns sum of all digits in numbers from 1 to n
def countNumbersWith4(n) :
    result = 0 # initialize result
 
    # One by one compute sum of digits
    # in every number from 1 to n
    for x in range(1, n + 1) :
        if(has4(x) == True) :
            result = result + 1
 
    return result
 
# A utility function to compute sum 
# of digits in a given number x
def has4(x) :
    while (x != 0) :
        if (x%10 == 4) :
            return True
        x = x //10
     
    return False
     
# Driver Program
n = 328
print ("Count of numbers from 1 to ", n,
        " that have 4 as a digit is ",
                    countNumbersWith4(n))
 
 
# This code is contributed by Nikita Tiwari.


C#




// C# program to compute sum of
// digits in numbers from 1 to n
using System;
 
public class GFG
{
     
    // Returns sum of all digits
    // in numbers from 1 to n
    static int countNumbersWith4(int n)
    {
         
        // initialize result
        int result = 0;
     
        // One by one compute sum of digits
        // in every number from 1 to n
        for (int x = 1; x <= n; x++)
            result += has4(x) ? 1 : 0;
     
        return result;
    }
     
    // A utility function to compute sum
    // of digits in a given number x
    static bool has4(int x)
    {
        while (x != 0)
        {
            if (x % 10 == 4)
            return true;
            x = x / 10;
        }
        return false;
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 328;
        Console.WriteLine("Count of numbers from 1 to "
                        + " that have 4 as a digit is "
                        + countNumbersWith4(n)) ;
    }
}
 
// This code is contributed by Sam007


PHP




<?php
// PHP program to compute sum of
// digits in numbers from 1 to n
 
// Returns sum of all digits
// in numbers from 1 to n
function countNumbersWith4($n)
{
    $result = 0; // initialize result
 
    // One by one compute sum of
    // digits in every number from 1 to n
    for ($x = 1; $x <= $n; $x++)
        $result += has4($x) ? 1 : 0;
 
    return $result;
}
 
// A utility function to compute
// sum of digits in a given number x
function has4($x)
{
    while ($x != 0)
    {
        if ($x % 10 == 4)
        return true;
        $x = intval($x / 10);
    }
    return false;
}
 
// Driver Code
$n = 328;
echo "Count of numbers from 1 to " . $n .
        " that have 4 as a digit is " .
                   countNumbersWith4($n);
     
// This code is contributed by Sam007
?>


Javascript




<script>
 
// Javascript program to compute sum of
// digits in numbers from 1 to n
 
// Returns sum of all digits
// in numbers from 1 to n
function countNumbersWith4(n)
{
     
    // Initialize result
    let result = 0;
    
    // One by one compute sum of digits
    // in every number from 1 to n
    for(let x = 1; x <= n; x++)
        result += has4(x) ? 1 : 0;
    
    return result;
}
 
// A utility function to compute sum
// of digits in a given number x
function has4(x)
{
    while (x != 0)
    {
        if (x % 10 == 4)
           return true;
            
        x = Math.floor(x / 10);
    }
    return false;
}
 
// Driver code
let n = 328;
document.write("Count of numbers from 1 to " + n +
               " that have 4 as a digit is " +
               countNumbersWith4(n)) ;
 
// This code is contributed by avanitrachhadiya2155
     
</script>


Output

Count of numbers from 1 to 328 that have 4 as a digit is 60

Time Complexity: O(N log N) ,as complexity of function countNumbersWith4(int n) is O(N) and as it calling function has4(int x) N times whose complexity is O(log N) ,thus overall complexity is O(N log N).

Auxiliary Space: O(1),  since no extra space used.

An Efficient Solution using DP: We can make above approach more efficient through DP (Dynamic Programming) using memoization technique. We can store the presence of 4 in the previous visited integers so that whenever we need to check those integers we don’t need to check whether it contains 4 or not by checking each digit again. To check we can simply check from the DP array. 

Implementation:

C++




#include <iostream>
using namespace std;
 
bool contains(int i);
 
int countNumberswith4(int N)
{
    int count = 0;
 
    bool dp[N + 1]
        = { 0 }; // boolean dp array to store whether
                 // the number contains digit '4' or not
 
    for (int i = 1; i <= N; i++) {
        if (dp[i]) { // if dp[i] is true that means
                     // that number contains digit '4'
            count++;
            continue; // if it contains then no need to
                      // check again hence continue
        }
 
        if (contains(i)) { // check if i contains digit '4'
                           // or not
            count++;
            dp[i]
                = true; // if it contains then mark dp[i] as
                        // true so that it can used later
        }
    }
 
    return count;
}
 
bool contains(int i) // boolean function to check
{ // whether i contains digit '4' or not
    while (i > 0) {
        if (i % 10 == 4)
            return true;
 
        i /= 10;
    }
    return false;
}
 
int main()
{
 
    int n = 278;
    cout << "Count of numbers from 1 to " << n
         << " that have 4 as a digit is "
         << countNumberswith4(n) << endl;
    return 0;
}
 
// This code is contributed by Anurag Mishra


Java




/*package whatever //do not write package name here */
import java.io.*;
 
class GFG {
 
    static int countNumberswith4(int N)
    {
        int count = 0;
        boolean dp[] = new boolean
            [N + 1]; // boolean dp array to store whether
                     // the number contains digit '4' or not
 
        for (int i = 1; i <= N; i++) {
            if (dp[i]) { // if dp[i] is true that means
                         // that number contains digit '4'
                count++;
                continue; // if it contains then no need to
                          // check again hence continue
            }
 
            if (contains(i)) { // check if i contains digit
                               // '4' or not
                count++;
                dp[i] = true; // if it contains then mark
                              // dp[i] as true so that it
                              // can used later
            }
        }
 
        return count;
    }
 
    static boolean
    contains(int i) // boolean function to check
    { // whether i contains digit '4' or not
        while (i > 0) {
            if (i % 10 == 4)
                return true;
 
            i /= 10;
        }
        return false;
    }
 
    public static void main(String[] args)
    {
        int n = 278;
        System.out.println("Count of numbers from 1 to " + n
                           + " that have 4 as a digit is "
                           + countNumberswith4(n));
    }
}
 
// This code is contributed by Anurag Mishra


Python3




def contains(i): # boolean function to check
    # whether i contains digit '4' or not
    while (i > 0):
        if (i % 10 == 4):
            return True
 
        i = i // 10
     
    return False
 
def countNumberswith4(N):
 
    count = 0
 
    dp = [0 for i in range(N + 1)]  # boolean dp array to store whether
                # the number contains digit '4' or not
 
    for i in range(1,N + 1):
        if (dp[i]): # if dp[i] is true that means
                    # that number contains digit '4'
            count += 1
            continue # if it contains then no need to
                    # check again hence continue
 
        if (contains(i)): # check if i contains digit '4'
                        # or not
            count += 1
            dp[i] = True # if it contains then mark dp[i] as
                        # true so that it can used later
 
    return count
 
 
# driver code
 
n = 278
print(f"Count of numbers from 1 to {n} that have 4 as a digit is {countNumberswith4(n)}")
 
 
# This code is contributed by shinjanpatra


C#




// C# program to find largest number
// smaller than equal to n with all prime digits.
using System;
class GFG {
    static bool contains(int i) // boolean function to check
    { // whether i contains digit '4' or not
        while (i > 0) {
            if (i % 10 == 4)
                return true;
 
            i /= 10;
        }
        return false;
    }
 
    static int countNumberswith4(int N)
    {
        int count = 0;
 
        bool[] dp = new bool[N + 1];
        for (int i = 0; i < dp.Length; i++) {
            dp[i] = false;
        } // boolean dp array to store whether
        // the number contains digit '4' or not
 
        for (int i = 1; i <= N; i++) {
            if (dp[i]) { // if dp[i] is true that means
                         // that number contains digit '4'
                count++;
                continue; // if it contains then no need to
                          // check again hence continue
            }
 
            if (contains(i)) { // check if i contains digit
                               // '4' or not
                count++;
                dp[i] = true; // if it contains then mark
                              // dp[i] as true so that it
                              // can used later
            }
        }
 
        return count;
    }
 
    // Driver code
    static void Main()
    {
        int n = 278;
        Console.WriteLine("Count of numbers from 1 to " + n
                          + " that have 4 as a digit is "
                          + countNumberswith4(n));
    }
}
 
// The code is contributed by Nidhi goel


Javascript




<script>
 
function contains(i){ // boolean function to check
    // whether i contains digit '4' or not
    while (i > 0){
        if (i % 10 == 4)
            return true
 
        i = Math.floor(i/10)
    }
    return false
}
 
function countNumberswith4(N){
 
    let count = 0
 
    let dp = new Array(N+1).fill(0)  // boolean dp array to store whether
                // the number contains digit '4' or not
 
    for(let i=1;i<N+1;i++){
        if (dp[i]){ // if dp[i] is true that means
                    // that number contains digit '4'
            count += 1
            continue // if it contains then no need to
                    // check again hence continue
        }
 
        if (contains(i)){ // check if i contains digit '4'
                        // or not
            count += 1
            dp[i] = true // if it contains then mark dp[i] as
                        // true so that it can used later
        }
    }
 
    return count
}
 
 
// driver code
 
let n = 278
document.write(`Count of numbers from 1 to {n} that have 4 as a digit is ${countNumberswith4(n)}`,"</br>")
 
 
// This code is contributed by shinjanpatra
 
</script>


Output

Count of numbers from 1 to 278 that have 4 as a digit is 55

Time complexity : O(n log n)

Space complexity : O(n)

Another Efficient Solution: 

Above first solution is a naive solution. We can do it more efficiently by finding a pattern. 
Let us take few examples. 

Count of numbers from 0 to 9   = 1
Count of numbers from 0 to 99  = 1*9 + 10 = 19
Count of numbers from 0 to 999 = 19*9 + 100 = 271 

In general, we can write 
   count(10d) =   9 * count(10d - 1) + 10d - 1

In below implementation, the above formula is implemented using dynamic programming as there are overlapping subproblems.
The above formula is one core step of the idea. Below is complete algorithm. 

1) Find number of digits minus one in n. Let this value be 'd'.  
   For 328, d is 2.

2) Compute some of digits in numbers from 1 to 10d - 1.  
   Let this sum be w. For 328, we compute sum of digits from 1 to 
   99 using above formula.

3) Find Most significant digit (msd) in n. For 328, msd is 3.

4.a) If MSD is 4. For example if n = 428, then count of
     numbers is sum of following.
     1) Count of numbers from 1 to 399
     2) Count of numbers from 400 to 428 which is 29.

4.b) IF MSD > 4. For example if n is 728, then count of
     numbers is sum of following.
     1) Count of numbers from 1 to 399 and count of numbers
        from 500 to 699, i.e., "a[2] * 6"
     2) Count of numbers from 400 to 499, i.e. 100
     3) Count of numbers from 700 to 728, recur for 28
4.c) IF MSD < 4. For example if n is 328, then count of
     numbers is sum of following.
     1) Count of numbers from 1 to 299 a
     2) Count of numbers from 300 to 328, recur for 28 

Below is implementation of above algorithm.

C++




// C++ program to count numbers having 4 as a digit
#include<bits/stdc++.h>
using namespace std;
 
// Function to count numbers from 1 to n that have
// 4 as a digit
int countNumbersWith4(int n)
{
    // Base case
   if (n < 4)
      return 0;
 
   // d = number of digits minus one in n. For 328, d is 2
   int d = log10(n);
 
   // computing count of numbers from 1 to 10^d-1,
   // d=0 a[0] = 0;
   // d=1 a[1] = count of numbers from 0 to 9 = 1
   // d=2 a[2] = count of numbers from 0 to 99 = a[1]*9 + 10 = 19
   // d=3 a[3] = count of numbers from 0 to 999 = a[2]*19 + 100 = 171
   int *a = new int[d+1];
   a[0] = 0, a[1] = 1;
   for (int i=2; i<=d; i++)
      a[i] = a[i-1]*9 + ceil(pow(10,i-1));
 
   // Computing 10^d
   int p = ceil(pow(10, d));
 
    // Most significant digit (msd) of n,
    // For 328, msd is 3 which can be obtained using 328/100
   int msd = n/p;
 
   // If MSD is 4. For example if n = 428, then count of
   // numbers is sum of following.
   // 1) Count of numbers from 1 to 399
   // 2) Count of numbers from 400 to 428 which is 29.
   if (msd == 4)
      return (msd)*a[d] + (n%p) + 1;
 
   // IF MSD > 4. For example if n is 728, then count of
   // numbers is sum of following.
   // 1) Count of numbers from 1 to 399 and count of numbers
   //    from 500 to 699, i.e., "a[2] * 6"
   // 2) Count of numbers from 400 to 499, i.e. 100
   // 3) Count of numbers from 700 to 728, recur for 28
   if (msd > 4)
      return (msd-1)*a[d] + p + countNumbersWith4(n%p);
 
   // IF MSD < 4. For example if n is 328, then count of
   // numbers is sum of following.
   // 1) Count of numbers from 1 to 299 a
   // 2) Count of numbers from 300 to 328, recur for 28
   return (msd)*a[d] + countNumbersWith4(n%p);
}
 
// Driver Program
int main()
{
   int n = 328;
   cout << "Count of numbers from 1 to " << n
        << " that have 4 as a digit is "
        << countNumbersWith4(n) << endl;
   return 0;
}


Java




// Java program to count numbers having 4 as a digit
class GFG
{
     
// Function to count numbers from
// 1 to n that have 4 as a digit
static int countNumbersWith4(int n)
{
    // Base case
    if (n < 4)
        return 0;
     
    // d = number of digits minus
    // one in n. For 328, d is 2
    int d = (int)Math.log10(n);
 
    // computing count of numbers from 1 to 10^d-1,
    // d=0 a[0] = 0;
    // d=1 a[1] = count of numbers from
    // 0 to 9 = 1
    // d=2 a[2] = count of numbers from
    // 0 to 99 = a[1]*9 + 10 = 19
    // d=3 a[3] = count of numbers from
    // 0 to 999 = a[2]*19 + 100 = 171
    int[] a = new int[d + 2];
    a[0] = 0;
    a[1] = 1;
 
    for (int i = 2; i <= d; i++)
        a[i] = a[i - 1] * 9 + (int)Math.ceil(Math.pow(10, i - 1));
 
    // Computing 10^d
    int p = (int)Math.ceil(Math.pow(10, d));
 
    // Most significant digit (msd) of n,
    // For 328, msd is 3 which can be obtained using 328/100
    int msd = n / p;
 
    // If MSD is 4. For example if n = 428, then count of
    // numbers is sum of following.
    // 1) Count of numbers from 1 to 399
    // 2) Count of numbers from 400 to 428 which is 29.
    if (msd == 4)
        return (msd) * a[d] + (n % p) + 1;
 
    // IF MSD > 4. For example if n
    // is 728, then count of numbers
    // is sum of following.
    // 1) Count of numbers from 1 to
    // 399 and count of numbers from
    // 500 to 699, i.e., "a[2] * 6"
    // 2) Count of numbers from 400
    // to 499, i.e. 100
    // 3) Count of numbers from 700 to
    // 728, recur for 28
    if (msd > 4)
        return (msd - 1) * a[d] + p +
                countNumbersWith4(n % p);
 
    // IF MSD < 4. For example if n is 328, then count of
    // numbers is sum of following.
    // 1) Count of numbers from 1 to 299 a
    // 2) Count of numbers from 300 to 328, recur for 28
    return (msd) * a[d] + countNumbersWith4(n % p);
}
 
// Driver code
public static void main (String[] args)
{
    int n = 328;
    System.out.println("Count of numbers from 1 to "+ n +
            " that have 4 as a digit is " + countNumbersWith4(n));
}
}
 
// This code is contributed by chandan_jnu


Python3




# Python3 program to count numbers having 4 as a digit
import math as mt
 
# Function to count numbers from 1 to n
# that have 4 as a digit
def countNumbersWith4(n):
 
    # Base case
    if (n < 4):
        return 0
 
    # d = number of digits minus one in n.
    # For 328, d is 2
    d = int(mt.log10(n))
 
    # computing count of numbers from 1 to 10^d-1,
    # d=0 a[0] = 0
    # d=1 a[1] = count of numbers from 0 to 9 = 1
    # d=2 a[2] = count of numbers from
    #            0 to 99 = a[1]*9 + 10 = 19
    # d=3 a[3] = count of numbers from
    #            0 to 999 = a[2]*19 + 100 = 171
    a = [1 for i in range(d + 1)]
    a[0] = 0
    if len(a) > 1:
        a[1] = 1
    for i in range(2, d + 1):
        a[i] = a[i - 1] * 9 + mt.ceil(pow(10, i - 1))
 
    # Computing 10^d
    p = mt.ceil(pow(10, d))
 
    # Most significant digit (msd) of n,
    # For 328, msd is 3 which can be
    # obtained using 328/100
    msd = n // p
 
    # If MSD is 4. For example if n = 428,
    # then count of numbers is sum of following.
    # 1) Count of numbers from 1 to 399
    # 2) Count of numbers from 400 to 428 which is 29.
    if (msd == 4):
        return (msd) * a[d] + (n % p) + 1
 
    # IF MSD > 4. For example if n is 728,
    # then count of numbers is sum of following.
    # 1) Count of numbers from 1 to 399 and count
    #  of numbers from 500 to 699, i.e., "a[2] * 6"
    # 2) Count of numbers from 400 to 499, i.e. 100
    # 3) Count of numbers from 700 to 728, recur for 28
    if (msd > 4):
        return ((msd - 1) * a[d] + p +
                 countNumbersWith4(n % p))
 
    # IF MSD < 4. For example if n is 328,
    # then count of numbers is sum of following.
    # 1) Count of numbers from 1 to 299 a
    # 2) Count of numbers from 300 to 328, recur for 28
    return (msd) * a[d] + countNumbersWith4(n % p)
 
# Driver Code
n = 328
print("Count of numbers from 1 to", n,
      "that have 4 as a digit is", countNumbersWith4(n))
       
# This code is contributed by mohit kumar 29


C#




// C# program to count numbers having 4 as a digit
using System;
 
class GFG
{
// Function to count numbers from
//  1 to n that have 4 as a digit
static int countNumbersWith4(int n)
{
    // Base case
    if (n < 4)
        return 0;
     
    // d = number of digits minus
    // one in n. For 328, d is 2
    int d = (int)Math.Log10(n);
 
    // computing count of numbers from 1 to 10^d-1,
    // d=0 a[0] = 0;
    // d=1 a[1] = count of numbers from
    // 0 to 9 = 1
    // d=2 a[2] = count of numbers from
    // 0 to 99 = a[1]*9 + 10 = 19
    // d=3 a[3] = count of numbers from
    // 0 to 999 = a[2]*19 + 100 = 171
    int[] a = new int[d+2];
    a[0] = 0;
    a[1] = 1;
 
    for (int i = 2; i <= d; i++)
        a[i] = a[i - 1] * 9 + (int)Math.Ceiling(Math.Pow(10, i - 1));
 
    // Computing 10^d
    int p = (int)Math.Ceiling(Math.Pow(10, d));
 
    // Most significant digit (msd) of n,
    // For 328, msd is 3 which can be obtained using 328/100
    int msd = n / p;
 
    // If MSD is 4. For example if n = 428, then count of
    // numbers is sum of following.
    // 1) Count of numbers from 1 to 399
    // 2) Count of numbers from 400 to 428 which is 29.
    if (msd == 4)
        return (msd) * a[d] + (n % p) + 1;
 
    // IF MSD > 4. For example if n is 728, then count of
    // numbers is sum of following.
    // 1) Count of numbers from 1 to 399 and count of numbers
    // from 500 to 699, i.e., "a[2] * 6"
    // 2) Count of numbers from 400 to 499, i.e. 100
    // 3) Count of numbers from 700 to 728, recur for 28
    if (msd > 4)
        return (msd - 1) * a[d] + p + countNumbersWith4(n % p);
 
    // IF MSD < 4. For example if n is 328, then count of
    // numbers is sum of following.
    // 1) Count of numbers from 1 to 299 a
    // 2) Count of numbers from 300 to 328, recur for 28
    return (msd) * a[d] + countNumbersWith4(n % p);
}
 
// Driver code
static void Main()
{
    int n = 328;
    Console.WriteLine("Count of numbers from 1 to "+ n +
            " that have 4 as a digit is " + countNumbersWith4(n));
}
}
 
// This code is contributed by chandan_jnu


PHP




<?php
// PHP program to count numbers having
// 4 as a digit
 
// Function to count numbers from 1 to n
// that have 4 as a digit
function countNumbersWith4($n)
{
    // Base case
    if ($n < 4)
        return 0;
     
    // d = number of digits minus one in n.
    // For 328, d is 2
    $d = (int)log10($n);
     
    // computing count of numbers from 1 to 10^d-1,
    // d=0 a[0] = 0;
    // d=1 a[1] = count of numbers from 0 to 9 is 1
    // d=2 a[2] = count of numbers from 0 to 99 is
    //                            a[1]*9 + 10 = 19
    // d=3 a[3] = count of numbers from 0 to 999 is
    //                          a[2]*19 + 100 = 171
    $a = array_fill(0, $d + 1, NULL);
    $a[0] = 0;
    $a[1] = 1;
    for ($i = 2; $i <= $d; $i++)
        $a[$i] = $a[$i - 1] * 9 +
                 ceil(pow(10, $i - 1));
     
    // Computing 10^d
    $p = ceil(pow(10, $d));
 
    // Most significant digit (msd) of n,
    // For 328, msd is 3 which can be
    // obtained using 328/100
    $msd = intval($n / $p);
     
    // If MSD is 4. For example if n = 428,
    // then count of numbers is sum of following.
    // 1) Count of numbers from 1 to 399
    // 2) Count of numbers from 400 to 428 which is 29.
    if ($msd == 4)
        return ($msd) * $a[$d] + ($n % $p) + 1;
     
    // IF MSD > 4. For example if n is 728,
    // then count of numbers is sum of following.
    // 1) Count of numbers from 1 to 399 and
    // count of numbers from 500 to 699, i.e., "a[2] * 6"
    // 2) Count of numbers from 400 to 499, i.e. 100
    // 3) Count of numbers from 700 to 728, recur for 28
    if ($msd > 4)
        return ($msd - 1) * $a[$d] + $p +
                countNumbersWith4($n % $p);
     
    // IF MSD < 4. For example if n is 328, then
    // count of numbers is sum of following.
    // 1) Count of numbers from 1 to 299 a
    // 2) Count of numbers from 300 to 328, recur for 28
    return ($msd) * $a[$d] +
            countNumbersWith4($n % $p);
}
 
// Driver Code
$n = 328;
echo "Count of numbers from 1 to " . $n .
     " that have 4 as a digit is " .
      countNumbersWith4($n) . "\n";
 
// This code is contributed by ita_c
?>


Javascript




<script>
 
// Javascript program to count numbers having 4 as a digit
     
    // Function to count numbers from
    // 1 to n that have 4 as a digit
    function countNumbersWith4(n)
    {
     
        // Base case
        if (n < 4)
            return 0;
          
        // d = number of digits minus
        // one in n. For 328, d is 2
        let d = Math.floor(Math.log10(n));
      
        // computing count of numbers from 1 to 10^d-1,
        // d=0 a[0] = 0;
        // d=1 a[1] = count of numbers from
        // 0 to 9 = 1
        // d=2 a[2] = count of numbers from
        // 0 to 99 = a[1]*9 + 10 = 19
        // d=3 a[3] = count of numbers from
        // 0 to 999 = a[2]*19 + 100 = 171
        let a = new Array(d + 2);
        for(let i=0;i<d+2;i++)
        {
            a[i]=0;
        }
        a[0] = 0;
        a[1] = 1;
      
        for (let i = 2; i <= d; i++)
            a[i] = a[i - 1] * 9 + Math.floor(Math.ceil(Math.pow(10, i - 1)));
      
        // Computing 10^d
        let p = Math.floor(Math.ceil(Math.pow(10, d)));
      
        // Most significant digit (msd) of n,
        // For 328, msd is 3 which can be obtained using 328/100
        let msd = Math.floor(n / p);
      
        // If MSD is 4. For example if n = 428, then count of
        // numbers is sum of following.
        // 1) Count of numbers from 1 to 399
        // 2) Count of numbers from 400 to 428 which is 29.
        if (msd == 4)
            return (msd) * a[d] + (n % p) + 1;
      
        // IF MSD > 4. For example if n
        // is 728, then count of numbers
        // is sum of following.
        // 1) Count of numbers from 1 to
        // 399 and count of numbers from
        // 500 to 699, i.e., "a[2] * 6"
        // 2) Count of numbers from 400
        // to 499, i.e. 100
        // 3) Count of numbers from 700 to
        // 728, recur for 28
        if (msd > 4)
            return (msd - 1) * a[d] + p +
                    countNumbersWith4(n % p);
      
        // IF MSD < 4. For example if n is 328, then count of
        // numbers is sum of following.
        // 1) Count of numbers from 1 to 299 a
        // 2) Count of numbers from 300 to 328, recur for 28
        return (msd) * a[d] + countNumbersWith4(n % p);
    }
     
    // Driver code
    let n = 328;
    document.write("Count of numbers from 1 to "+ n +
            " that have 4 as a digit is " + countNumbersWith4(n));
     
    //  This code is contributed by rag2127
</script>


Output

Count of numbers from 1 to 328 that have 4 as a digit is 60

Time complexity : O(log n)

space complexity : O(log n)

This article is contributed by Shivam. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments