Tuesday, December 31, 2024
Google search engine
HomeLanguagesDynamic ProgrammingCount number of ways to fill a “n x 4” grid using...

Count number of ways to fill a “n x 4” grid using “1 x 4” tiles

Given a number n, count number of ways to fill a n x 4 grid using 1 x 4 tiles.
Examples: 
 

Input : n = 1
Output : 1

Input : n = 2
Output : 1
We can only place both tiles horizontally

Input : n = 3
Output : 1
We can only place all tiles horizontally.

Input : n = 4
Output : 2
The two ways are :
1) Place all tiles horizontally
2) Place all tiles vertically.

Input : n = 5
Output : 3
We can fill a 5 x 4 grid in following ways :
1) Place all 5 tiles horizontally
2) Place first 4 vertically and 1 horizontally.
3) Place first 1 horizontally and 4 vertically.

 

We strongly recommend that you click here and practice it, before moving on to the solution.

This problem is mainly an extension of this tiling problem
Let “count(n)” be the count of ways to place tiles on a “n x 4” grid, following two cases arise when we place the first tile. 
 

  1. Place the first tile horizontally : If we place first tile horizontally, the problem reduces to “count(n-1)”
  2. Place the first tile vertically : If we place first tile vertically, then we must place 3 more tiles vertically. So the problem reduces to “count(n-4)”

 

grid

Therefore, count(n) can be written as below. 
 

   count(n) = 1 if n = 1 or n = 2 or n = 3   
count(n) = 2 if n = 4
count(n) = count(n-1) + count(n-4)

This recurrence is similar to Fibonacci Numbers and can be solved using Dynamic programming.
 
 

C++




// C++ program to count of ways to place 1 x 4 tiles
// on n x 4 grid.
#include<iostream>
using namespace std;
 
// Returns count of count of ways to place 1 x 4 tiles
// on n x 4 grid.
int count(int n)
{
    // Create a table to store results of subproblems
    // dp[i] stores count of ways for i x 4 grid.
    int dp[n+1];
    dp[0] = 0;
 
    // Fill the table from d[1] to dp[n]
    for (int i=1; i<=n; i++)
    {
        // Base cases
        if (i >= 1 && i <= 3)
            dp[i] = 1;
        else if (i==4)
            dp[i] = 2 ;
 
        else
            // dp(i-1) : Place first tile horizontally
            // dp(n-4) : Place first tile vertically
            //         which means 3 more tiles have
            //         to be placed vertically.
            dp[i] = dp[i-1] + dp[i-4];
    }
 
    return dp[n];
}
 
// Driver program to test above
int main()
{
    int n = 5;
    cout << "Count of ways is " << count(n);
    return 0;
}


Java




// Java program to count of ways to place 1 x 4 tiles
// on n x 4 grid
import java.io.*;
 
class Grid
{
    // Function that count the number of ways to place 1 x 4 tiles
    // on n x 4 grid.
    static int count(int n)
    {
        // Create a table to store results of sub-problems
        // dp[i] stores count of ways for i x 4 grid.
        int[] dp = new int[n+1];
        dp[0] = 0;
        // Fill the table from d[1] to dp[n]
        for(int i=1;i<=n;i++)
        {
            // Base cases
            if (i >= 1 && i <= 3)
                dp[i] = 1;
            else if (i==4)
                dp[i] = 2 ;
 
            else
            {
                    // dp(i-1) : Place first tile horizontally
                    // dp(i-4) : Place first tile vertically
                    //         which means 3 more tiles have
                    //         to be placed vertically.
                    dp[i] = dp[i-1] + dp[i-4];
            }
        }
        return dp[n];
    }
     
    // Driver program
    public static void main (String[] args)
    {
        int n = 5;
        System.out.println("Count of ways is: " + count(n));
    }
}
 
// Contributed by Pramod Kumar


Python3




# Python program to count of ways to place 1 x 4 tiles
# on n x 4 grid.
 
# Returns count of count of ways to place 1 x 4 tiles
# on n x 4 grid.
def count(n):
 
    # Create a table to store results of subproblems
    # dp[i] stores count of ways for i x 4 grid.
    dp = [0 for _ in range(n+1)]
 
    # Fill the table from d[1] to dp[n]
    for i in range(1,n+1):
 
        # Base cases
        if i <= 3:
            dp[i] = 1
        elif i == 4:
            dp[i] = 2
        else:
            # dp(i-1) : Place first tile horizontally
            # dp(n-4) : Place first tile vertically
            #           which means 3 more tiles have
            #           to be placed vertically.
            dp[i] = dp[i-1] + dp[i-4]
 
    return dp[n]
 
# Driver code to test above
n = 5
print ("Count of ways is"),
print (count(n))


C#




// C# program to count of ways
// to place 1 x 4 tiles on
// n x 4 grid
using System;
 
class GFG
{
     
    // Function that count the number
    // of ways to place 1 x 4 tiles
    // on n x 4 grid.
    static int count(int n)
    {
         
        // Create a table to store results
        // of sub-problems dp[i] stores
        // count of ways for i x 4 grid.
        int[] dp = new int[n + 1];
        dp[0] = 0;
         
        // Fill the table from d[1]
        // to dp[n]
        for(int i = 1; i <= n; i++)
        {
             
            // Base cases
            if (i >= 1 && i <= 3)
                dp[i] = 1;
            else if (i == 4)
                dp[i] = 2 ;
 
            else
            {
                 
                // dp(i-1) : Place first tile
                // horizontally dp(i-4) :
                // Place first tile vertically
                // which means 3 more tiles have
                // to be placed vertically.
                dp[i] = dp[i - 1] +
                        dp[i - 4];
            }
        }
        return dp[n];
    }
     
    // Driver Code
    public static void Main ()
    {
        int n = 5;
        Console.WriteLine("Count of ways is: "
                           + count(n));
    }
}
 
// This code is contributed by Sam007


Javascript




<script>
 
// JavaScript program to count of ways to place 1 x 4 tiles
// on n x 4 grid
 
    // Function that count the number of ways to place 1 x 4 tiles
    // on n x 4 grid.
    function count(n)
    {
     
        // Create a table to store results of sub-problems
        // dp[i] stores count of ways for i x 4 grid.
        let dp = [];
        dp[0] = 0;
         
        // Fill the table from d[1] to dp[n]
        for(let i = 1; i <= n; i++)
        {
         
            // Base cases
            if (i >= 1 && i <= 3)
                dp[i] = 1;
            else if (i == 4)
                dp[i] = 2 ;
   
            else
            {
             
                    // dp(i-1) : Place first tile horizontally
                    // dp(i-4) : Place first tile vertically
                    //         which means 3 more tiles have
                    //         to be placed vertically.
                    dp[i] = dp[i - 1] + dp[i - 4];
            }
        }
        return dp[n];
    }
 
// Driver Code
        let n = 5;
        document.write("Count of ways is: " + count(n));
     
    // This code is contributed by target_2.
</script>


PHP




<?php
// PHP program to count of ways to
// place 1 x 4 tiles on n x 4 grid.
 
// Returns count of count of ways
// to place 1 x 4 tiles
// on n x 4 grid.
function countt($n)
{
     
    // Create a table to store
    // results of subproblems
    // dp[i] stores count of
    // ways for i x 4 grid.
    $dp[$n + 1] = 0;
    $dp[0] = 0;
 
    // Fill the table
    // from d[1] to dp[n]
    for ($i = 1; $i <= $n; $i++)
    {
         
        // Base cases
        if ($i >= 1 && $i <= 3)
            $dp[$i] = 1;
        else if ($i == 4)
            $dp[$i] = 2 ;
 
        else
            // dp(i-1) : Place first tile horizontally
            // dp(n-4) : Place first tile vertically
            //             which means 3 more tiles have
            //             to be placed vertically.
            $dp[$i] = $dp[$i - 1] + $dp[$i - 4];
    }
 
    return $dp[$n];
}
 
    // Driver Code
    $n = 5;
    echo "Count of ways is " , countt($n);
 
// This code is contributed by nitin mittal.
?>


Output : 

Count of ways is 3

Time Complexity : O(n) 
Auxiliary Space : O(n)

Efficient approach : Space Optimization

In previous approach we the current value dp[i] is only depend upon the previous 2 values i.e. dp[i-1] and dp[i-4]. So to optimize the space we can keep track of previous 4 values and current values which will reduce the space complexity from O(N) to O(1)

Implementation Steps:

  • Handle the base cases:
    • If n is less than or equal to 0, return 0.
    • If n is less than or equal to 3, return 1.
  • Initialize variables dp1, dp2, dp3, and dp4 with values 1, 1, 1, and 2 respectively.
  • Initialize dp to 0.
  • Iterate from 5 to n:
  • Calculate dp as the sum of dp4 and dp1.
  • Update the variables: shift dp1 to dp2, dp2 to dp3, dp3 to dp4, and dp4 to dp.
  • Return dp as the count of ways.

Implementation:

C++




// C++ code for the above approach approach
 
#include<iostream>
using namespace std;
 
// Returns count of count of ways to place 1 x 4 tiles
// on n x 4 grid.
int count(int n)
{  
    // Base Case
    if (n <= 0)
        return 0;
 
    if (n <= 3)
        return 1;
     
    // create the dp previous instances
    int dp1 = 1;
    int dp2 = 1;
    int dp3 = 1;
    int dp4 = 2;
    int dp = 0; // to store current value
     
    // iterate to get the current value from previous computations
    for (int i = 5; i <= n; i++)
    {
        dp = dp4 + dp1;
        dp1 = dp2;
        dp2 = dp3;
        dp3 = dp4;
        dp4 = dp;
    }
 
    // return final answer
    return dp;
}
 
// Driver code
int main()
{
    int n = 5;
    cout << "Count of ways is " << count(n) << endl;
    return 0;
}
 
// -- by bhardwajji


Java




/*package whatever //do not write package name here */
 
import java.io.*;
class Gfg {
    // Returns count of ways to place 1 x 4 tiles on n x 4 grid.
    static int count(int n) {
        // Base Case
        if (n <= 0)
            return 0;
        if (n <= 3)
            return 1;
 
        // Create the dp previous instances
        int dp1 = 1;
        int dp2 = 1;
        int dp3 = 1;
        int dp4 = 2;
        int dp = 0; // To store the current value
 
        // Iterate to get the current value from previous computations
        for (int i = 5; i <= n; i++) {
            dp = dp4 + dp1;
            dp1 = dp2;
            dp2 = dp3;
            dp3 = dp4;
            dp4 = dp;
        }
 
        // Return the final answer
        return dp;
    }
 
    // Driver code
    public static void main(String[] args) {
        int n = 5;
        System.out.println("Count of ways is " + count(n));
    }
}
 
// code is contributed by shinjanpatra


Output :

Count of ways is 3

Time Complexity : O(n) 
Auxiliary Space : O(1)

This article is contributed by Rajat Jha. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments