Monday, January 27, 2025
Google search engine
HomeData Modelling & AICount number of ways to cover a distance | Set 2

Count number of ways to cover a distance | Set 2

Given a distance N. The task is to count the total number of ways to cover the distance with 1, 2 and 3 steps.
Examples: 
 

Input: N = 3 
Output:
All the required ways are (1 + 1 + 1), (1 + 2), (2 + 1) and (3).
Input: N = 4 
Output:
 

 

Approach: In previous article, a recursive and dynamic programming based approach has been discussed. Here we will reduce the space complexity. It can be observed that to calculate the number of steps to cover the distance i, only the last three states are required (i – 1, i – 2, i – 3). So, the result can be calculated using the last three states.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the count of the
// total number of ways to cover the
// distance with 1, 2 and 3 steps
int countWays(int n)
{
    // Base conditions
    if (n == 0)
        return 1;
    if (n <= 2)
        return n;
 
    // To store the last three stages
    int f0 = 1, f1 = 1, f2 = 2, ans;
 
    // Find the numbers of steps required
    // to reach the distance i
    for (int i = 3; i <= n; i++) {
        ans = f0 + f1 + f2;
        f0 = f1;
        f1 = f2;
        f2 = ans;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int n = 4;
 
    cout << countWays(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
// Function to return the count of the
// total number of ways to cover the
// distance with 1, 2 and 3 steps
static int countWays(int n)
{
    // Base conditions
    if (n == 0)
        return 1;
    if (n <= 2)
        return n;
 
    // To store the last three stages
    int f0 = 1, f1 = 1, f2 = 2;
    int ans=0;
 
    // Find the numbers of steps required
    // to reach the distance i
    for (int i = 3; i <= n; i++)
    {
        ans = f0 + f1 + f2;
        f0 = f1;
        f1 = f2;
        f2 = ans;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void main (String[] args)
{
     
    int n = 4;
    System.out.println (countWays(n));
}
}
 
// This code is contributed by jit_t


Python




# Python3 implementation of the approach
 
# Function to return the count of the
# total number of ways to cover the
# distance with 1, 2 and 3 steps
def countWays(n):
     
    # Base conditions
    if (n == 0):
        return 1
    if (n <= 2):
        return n
 
    # To store the last three stages
    f0 = 1
    f1 = 1
    f2 = 2
    ans = 0
 
    # Find the numbers of steps required
    # to reach the distance i
    for i in range(3, n + 1):
        ans = f0 + f1 + f2
        f0 = f1
        f1 = f2
        f2 = ans
 
    # Return the required answer
    return ans
 
# Driver code
n = 4
 
print(countWays(n))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the count of the
// total number of ways to cover the
// distance with 1, 2 and 3 steps
static int countWays(int n)
{
    // Base conditions
    if (n == 0)
        return 1;
    if (n <= 2)
        return n;
 
    // To store the last three stages
    int f0 = 1, f1 = 1, f2 = 2;
    int ans = 0;
 
    // Find the numbers of steps required
    // to reach the distance i
    for (int i = 3; i <= n; i++)
    {
        ans = f0 + f1 + f2;
        f0 = f1;
        f1 = f2;
        f2 = ans;
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 4;
    Console.WriteLine (countWays(n));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to return the count of the
    // total number of ways to cover the
    // distance with 1, 2 and 3 steps
    function countWays(n)
    {
        // Base conditions
        if (n == 0)
            return 1;
        if (n <= 2)
            return n;
 
        // To store the last three stages
        let f0 = 1, f1 = 1, f2 = 2;
        let ans = 0;
 
        // Find the numbers of steps required
        // to reach the distance i
        for (let i = 3; i <= n; i++)
        {
            ans = f0 + f1 + f2;
            f0 = f1;
            f1 = f2;
            f2 = ans;
        }
 
        // Return the required answer
        return ans;
    }
     
    let n = 4;
    document.write(countWays(n));
 
// This code is contributed by suresh07.
</script>


Output: 

7

 

Time Complexity: O(N) 
Space Complexity O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Wardslaus
Dominic Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments