Given a large binary number.The task is to count the number of 1’s in a given range from L to R (1 based indexing).
Examples:
Input : s = “101101011010100000111”, L = 6, R = 15
Output : 5
s [L : R] = “1011010100”
There is only 5 set bits.
Input : s = “10110”, L = 2, R = 5
Output : 2
Approach:
- Convert the string of size len to the bitset of size N.
- There is no need of (N – len) + (L – 1) bits in the left side and (N – R) bits in the right side of the bitset .
- Remove those bits efficiently using left and right shift bitwise operation.
- Now there are all zeroes in the left side of L and right side of R, so just use count() function to get the count of 1’s in the bitset as all positions except [L, R] are ‘0’.
Below is the implementation of above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; #define N 32 // C++ function to count // number of 1's using bitset int GetOne(string s, int L, int R) { int len = s.length(); // Converting the string into bitset bitset<N> bit(s); // Bitwise operations // Left shift bit <<= (N - len + L - 1); // Right shifts bit >>= (N - len + L - 1); bit >>= (len - R); // Now bit has only those bits // which are in range [L, R] // return count of one in [L, R] return bit.count(); } // Driver code int main() { string s = "01010001011" ; int L = 2, R = 4; cout << GetOne(s, L, R); return 0; } |
Java
// Java implementation of above approach public class Main { static final int N = 32 ; // Function to count // the number of 1's using a bit string static int getOne(String s, int L, int R) { int len = s.length(); // Converting s to an N-bit representation s = "0" .repeat(Math.max( 0 , N - len)) + s; // Extracting bits of the range [L, R] String bit = s.substring(N - R, N - L + 1 ); // Now bit has only those bits // which are in the range [L, R] // Return the count of '1's in [L, R] return ( int ) bit.chars().filter(c -> c == '1' ).count(); } // Driver code public static void main(String[] args) { String s = "01010001011" ; int L = 2 , R = 4 ; // Function Call System.out.println(getOne(s, L, R)); } } |
Python3
# Python3 implementation of above approach N = 32 # function for converting binary # string into integer value def binStrToInt(binary_str): length = len (binary_str) num = 0 for i in range (length): num = num + int (binary_str[i]) num = num * 2 return num / 2 # function to count # number of 1's using bitset def GetOne(s, L, R) : length = len (s); # Converting the string into bitset bit = s.zfill( 32 - len (s)); bit = int (binStrToInt(bit)) # Bitwise operations # Left shift bit << = (N - length + L - 1 ); # Right shifts bit >> = (N - length + L - 1 ); bit >> = (length - R); # Now bit has only those bits # which are in range [L, R] # return count of one in [L, R] return bin (bit).count( '1' ); # Driver code if __name__ = = "__main__" : s = "01010001011" ; L = 2 ; R = 4 ; print (GetOne(s, L, R)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of above approach using System; using System.Linq; class GFG { static int N = 32; // C# function to count // number of 1's using bit string static int GetOne( string s, int L, int R) { int len = s.Length; // Converting s to an N bit representation s = s.PadLeft(N, '0' ); // Extracting bits of the range [L, R] string bit = s.Substring(N - R, R - L + 1); // Now bit has only those bits // which are in range [L, R] // return count of one in [L, R] return bit.Count(f => (f == '1' )); } // Driver code public static void Main( string [] args) { string s = "01010001011" ; int L = 2, R = 4; // Function Call Console.WriteLine(GetOne(s, L, R)); } } // This code is contributed by phasing17 |
Javascript
// JavaScript implementation of above approach var N = 32; // function for converting binary // string into integer value function binStrToInt(binary_str) { var length = binary_str.length; var num = 0; for ( var i = 0; i < length; i++) { num = num + parseInt(binary_str[i]); num = num * 2; } return num / 2; } // function to count // number of 1's using bitset function GetOne(s, L, R) { var length = s.length; // Converting the string into bitset var bit = "0" * (32 - length) + s; bit = parseInt(binStrToInt(bit)); // Bitwise operations // Left shift bit <<= (N - length + L - 1); // Right shifts bit >>= (N - length + L - 1); bit >>= (length - R); // Now bit has only those bits // which are in range [L, R] // return count of one in [L, R] return bit.toString(2).split( "1" ).length - 1; } var s = "01010001011" ; var L = 2; var R = 4; console.log(GetOne(s, L, R)); //This code is contributed by phasing17 |
2
Time Complexity: O(len)
Auxiliary Space: O(len)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!