Thursday, December 26, 2024
Google search engine
HomeData Modelling & AICount number of binary strings such that there is no substring of...

Count number of binary strings such that there is no substring of length greater than or equal to 3 with all 1’s

Given an integer N, the task is to count the number of binary strings possible of length N such that they don’t contain “111” as a substring. The answer could be large so print answer modulo 109 + 7.
Examples: 
 

Input: N = 3 
Output:
All possible substring are “000”, “001”, 
“010”, “011”, “100”, “101” and “110”. 
“111” is not a valid string.
Input N = 16 
Output: 19513 
 

 

Approach: Dynamic programming can be used to solve this problem. Create a dp[][] array where dp[i][j] will store the count of possible substrings such that 1 appears j times consecutively upto the ith index. Now, the recurrence relations will be: 
 

dp[i][0] = dp[i – 1][0] + dp[i – 1][1] + dp[i – 1][2] 
dp[i][1] = dp[i – 1][0] 
dp[i][2] = dp[i – 1][1] 
 

And the base cases will be dp[1][0] = 1, dp[1][1] = 1 and dp[1][2] = 0. Now, the required count of strings will be dp[N][0] + dp[N][1] + dp[N][2].
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const long MOD = 1000000007;
 
// Function to return the count
// of all possible valid strings
long countStrings(long N)
{
 
    long dp[N + 1][3];
 
    // Fill 0's in the dp array
    memset(dp, 0, sizeof(dp));
 
    // Base cases
    dp[1][0] = 1;
    dp[1][1] = 1;
    dp[1][2] = 0;
 
    for (int i = 2; i <= N; i++) {
 
        // dp[i][j] = number of possible strings
        // such that '1' just appeared consecutively
        // j times upto the ith index
        dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]
                    + dp[i - 1][2])
                   % MOD;
 
        // Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD;
        dp[i][2] = dp[i - 1][1] % MOD;
    }
 
    // Taking all possible cases that
    // can appear at the Nth position
    long ans = (dp[N][0] + dp[N][1]
                + dp[N][2])
               % MOD;
 
    return ans;
}
 
// Driver code
int main()
{
    long N = 3;
 
    cout << countStrings(N);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
    final static int MOD = 1000000007;
     
    // Function to return the count
    // of all possible valid strings
    static long countStrings(int N)
    {
        int i, j;
         
        int dp[][] = new int[N + 1][3];
     
        // Fill 0's in the dp array
        for(i = 0; i < N + 1; i++)
        {
            for(j = 9; j < 3 ; j ++)
            {
                dp[i][j] = 0;
            }
        }
         
        // Base cases
        dp[1][0] = 1;
        dp[1][1] = 1;
        dp[1][2] = 0;
     
        for (i = 2; i <= N; i++)
        {
     
            // dp[i][j] = number of possible strings
            // such that '1' just appeared consecutively
            // j times upto the ith index
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][1] +
                        dp[i - 1][2]) % MOD;
     
            // Taking previously calculated value
            dp[i][1] = dp[i - 1][0] % MOD;
            dp[i][2] = dp[i - 1][1] % MOD;
        }
     
        // Taking all possible cases that
        // can appear at the Nth position
        int ans = (dp[N][0] + dp[N][1] +
                              dp[N][2]) % MOD;
     
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int N = 3;
     
        System.out.println(countStrings(N));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
MOD = 1000000007
 
# Function to return the count
# of all possible valid strings
def countStrings(N):
 
    # Initialise and fill 0's in the dp array
    dp = [[0] * 3 for i in range(N + 1)]
 
    # Base cases
    dp[1][0] = 1;
    dp[1][1] = 1;
    dp[1][2] = 0;
 
    for i in range(2, N + 1):
 
        # dp[i][j] = number of possible strings
        # such that '1' just appeared consecutively
        # j times upto the ith index
        dp[i][0] = (dp[i - 1][0] +
                    dp[i - 1][1] +
                    dp[i - 1][2]) % MOD
 
        # Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD
        dp[i][2] = dp[i - 1][1] % MOD
     
 
    # Taking all possible cases that
    # can appear at the Nth position
    ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD
 
    return ans
 
# Driver code
if __name__ == '__main__':
 
    N = 3
 
    print(countStrings(N))
 
# This code is contributed by ashutosh450


C#




// C# implementation of the above approach
using System;        
 
class GFG
{
    static readonly int MOD = 1000000007;
     
    // Function to return the count
    // of all possible valid strings
    static long countStrings(int N)
    {
        int i, j;
         
        int [,]dp = new int[N + 1, 3];
     
        // Fill 0's in the dp array
        for(i = 0; i < N + 1; i++)
        {
            for(j = 9; j < 3; j ++)
            {
                dp[i, j] = 0;
            }
        }
         
        // Base cases
        dp[1, 0] = 1;
        dp[1, 1] = 1;
        dp[1, 2] = 0;
     
        for (i = 2; i <= N; i++)
        {
     
            // dp[i,j] = number of possible strings
            // such that '1' just appeared consecutively
            // j times upto the ith index
            dp[i, 0] = (dp[i - 1, 0] + dp[i - 1, 1] +
                        dp[i - 1, 2]) % MOD;
     
            // Taking previously calculated value
            dp[i, 1] = dp[i - 1, 0] % MOD;
            dp[i, 2] = dp[i - 1, 1] % MOD;
        }
     
        // Taking all possible cases that
        // can appear at the Nth position
        int ans = (dp[N, 0] + dp[N, 1] +
                              dp[N, 2]) % MOD;
     
        return ans;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int N = 3;
     
        Console.WriteLine(countStrings(N));
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// javascript implementation of the approach
 
    var MOD = 1000000007;
     
    // Function to return the count
    // of all possible valid strings
    function countStrings(N)
    {
        var i, j;
         
        var dp = Array(N+1).fill(0).map(x => Array(3).fill(0));
     
        // Fill 0's in the dp array
        for(i = 0; i < N + 1; i++)
        {
            for(j = 9; j < 3 ; j ++)
            {
                dp[i][j] = 0;
            }
        }
         
        // Base cases
        dp[1][0] = 1;
        dp[1][1] = 1;
        dp[1][2] = 0;
     
        for (i = 2; i <= N; i++)
        {
     
            // dp[i][j] = number of possible strings
            // such that '1' just appeared consecutively
            // j times upto the ith index
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][1] +
                        dp[i - 1][2]) % MOD;
     
            // Taking previously calculated value
            dp[i][1] = dp[i - 1][0] % MOD;
            dp[i][2] = dp[i - 1][1] % MOD;
        }
     
        // Taking all possible cases that
        // can appear at the Nth position
        var ans = (dp[N][0] + dp[N][1] +
                              dp[N][2]) % MOD;
     
        return ans;
    }
     
// Driver code
var N = 3;
document.write(countStrings(N));
 
// This code is contributed by 29AjayKumar
</script>


Output: 

7

 

Time Complexity: O(N)

Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments