Monday, January 13, 2025
Google search engine
HomeData Modelling & AICount nodes with two children at level L in a Binary Tree

Count nodes with two children at level L in a Binary Tree

Given a Binary tree, the task is to count the number of nodes with two children at a given level L.

Examples: 

Input: 
          1
         /  \
        2    3
       / \    \
      4   5    6
         /    / \
        7    8   9
L = 2
Output: 1

Input:
          20
         /   \
        8     22
       / \    / \
      5   3  4   25
     / \  / \     \
    1  10 2  14    6
L = 3
Output: 2

Approach: Initialize a variable count = 0. Recursively traverse the tree in a level order manner. If the current level is same as the given level, then check whether the current node has two children. If it has two children then increment the variable count.

Below is the implementation of the above approach: 

C++




// C++ program to find number of full nodes
// at a given level
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Utility function to allocate memory for a new node
struct Node* newNode(int data)
{
    struct Node* node = new (struct Node);
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Function that returns the height of binary tree
int height(struct Node* root)
{
    if (root == NULL)
        return 0;
 
    int lheight = height(root->left);
    int rheight = height(root->right);
 
    return max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
void LevelOrder(struct Node* root, int level, int& count)
{
    if (root == NULL)
        return;
 
    if (level == 1 && root->left && root->right)
        count++;
 
    else if (level > 1) {
        LevelOrder(root->left, level - 1, count);
        LevelOrder(root->right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
int CountFullNodes(struct Node* root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    int count = 0;
 
    LevelOrder(root, L, count);
 
    return count;
}
 
// Driver code
int main()
{
    struct Node* root = newNode(7);
    root->left = newNode(5);
    root->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right = newNode(1);
    root->left->left->left = newNode(2);
    root->left->left->right = newNode(11);
    root->right->left = newNode(3);
    root->right->right = newNode(9);
    root->right->right->right = newNode(13);
    root->right->right->left = newNode(10);
    root->right->right->right->left = newNode(4);
    root->right->right->right->right = newNode(12);
 
    int L = 3;
 
    cout << CountFullNodes(root, L);
 
    return 0;
}


Java




// Java program to find number of full nodes
// at a given level
class GFG
{
 
//INT class
static class INT
{
    int a;
}
 
// A binary tree node
static class Node
{
    int data;
    Node left, right;
};
 
// Utility function to allocate memory for a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function that returns the height of binary tree
static int height(Node root)
{
    if (root == null)
        return 0;
 
    int lheight = height(root.left);
    int rheight = height(root.right);
 
    return Math.max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
static void LevelOrder( Node root, int level, INT count)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left!=null && root.right!=null)
        count.a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1, count);
        LevelOrder(root.right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
static int CountFullNodes( Node root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    INT count =new INT();
    count.a = 0;
 
    LevelOrder(root, L, count);
 
    return count.a;
}
 
// Driver code
public static void main(String args[])
{
    Node root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
 
    int L = 3;
 
    System.out.print( CountFullNodes(root, L));
 
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 program to find number of
# full nodes at a given level
 
# INT class
class INT:
  
    def __init__(self):
         
        self.a = 0
 
# A binary tree node
class Node:
     
    def __init__(self, data):
         
        self.left = None
        self.right = None
        self.data = data
  
# Utility function to allocate
# memory for a new node
def newNode(data):
 
    node = Node(data)
     
    return node
 
# Function that returns the
# height of binary tree
def height(root):
 
    if (root == None):
        return 0;
  
    lheight = height(root.left);
    rheight = height(root.right);
  
    return max(lheight, rheight) + 1;
 
# Level Order traversal to find the
# number of nodes having two children
def LevelOrder(root, level, count):
 
    if (root == None):
        return;
  
    if (level == 1 and
        root.left != None and
       root.right != None):
        count.a += 1
  
    elif (level > 1):
        LevelOrder(root.left,
                   level - 1, count);
        LevelOrder(root.right,
                   level - 1, count);
  
# Returns the number of full nodes
# at a given level
def CountFullNodes(root, L):
 
    # Stores height of tree
    h = height(root);
  
    # Stores count of nodes at a
    # given level that have two children
    count = INT()
  
    LevelOrder(root, L, count);
  
    return count.a
 
# Driver code   
if __name__=="__main__":
     
    root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
  
    L = 3;
  
    print(CountFullNodes(root, L))
     
# This code is contributed by rutvik_56


C#




// C# program to find number of full nodes
// at a given level
using System;
 
class GFG
{
 
// INT class
public class INT
{
    public int a;
}
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right;
};
 
// Utility function to allocate memory for a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function that returns the height of binary tree
static int height(Node root)
{
    if (root == null)
        return 0;
 
    int lheight = height(root.left);
    int rheight = height(root.right);
 
    return Math.Max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
static void LevelOrder( Node root, int level, INT count)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left!=null && root.right!=null)
        count.a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1, count);
        LevelOrder(root.right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
static int CountFullNodes( Node root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    INT count =new INT();
    count.a = 0;
 
    LevelOrder(root, L, count);
 
    return count.a;
}
 
// Driver code
public static void Main(String []args)
{
    Node root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
 
    int L = 3;
 
    Console.Write( CountFullNodes(root, L));
 
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program to find number
// of full nodes at a given level
 
// INT class
let a = 0;
 
// A binary tree node
class Node
{
    constructor(data)
    {
        this.left = null;
        this.right = null;
        this.data = data;
    }
}
 
// Utility function to allocate memory
// for a new node
function newNode(data)
{
    let node = new Node(data);
    return (node);
}
 
// Function that returns the height
// of binary tree
function height(root)
{
    if (root == null)
        return 0;
 
    let lheight = height(root.left);
    let rheight = height(root.right);
 
    return Math.max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number
// of nodes having two children
function LevelOrder(root, level)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left != null &&
                     root.right != null)
        a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1);
        LevelOrder(root.right, level - 1);
    }
}
 
// Returns the number of full nodes
// at a given level
function CountFullNodes(root, L)
{
     
    // Stores height of tree
    let h = height(root);
 
    LevelOrder(root, L);
 
    return a;
}
 
// Driver code
let root = newNode(7);
root.left = newNode(5);
root.right = newNode(6);
root.left.left = newNode(8);
root.left.right = newNode(1);
root.left.left.left = newNode(2);
root.left.left.right = newNode(11);
root.right.left = newNode(3);
root.right.right = newNode(9);
root.right.right.right = newNode(13);
root.right.right.left = newNode(10);
root.right.right.right.left = newNode(4);
root.right.right.right.right = newNode(12);
 
let L = 3;
 
document.write(CountFullNodes(root, L));
 
// This code is contributed by mukesh07
 
</script>


Output: 

2

 

Time Complexity: O(N) 
Auxiliary Space: O(N)

Another Approach:

We can solve this problem by level order traversal using queue. In which we find the element which have two children at given level and increment the count variable. 

Below is the implementation of above approach:

C++




// C++ program to find number of full nodes
// at a given level
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
// function to allocate memory for a new node
struct Node* newNode(int data)
{
    struct Node* node = new Node();
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
 
// function to return the number
// of nodes
int levelOrderTraversal(Node* root, int L)
{
    int count = 0;
    int level = 0;
    queue<Node*> q;
    q.push(root);
    while (!q.empty()) {
        level++;
        int n = q.size();
        for (int i = 0; i < n; i++) {
            Node* front_node = q.front();
            q.pop();
            if (L == level && front_node->left != NULL
                && front_node->right != NULL) {
                count++;
            }
            if (front_node->left != NULL)
                q.push(front_node->left);
            if (front_node->right != NULL)
                q.push(front_node->right);
        }
    }
    return count;
}
 
// Driver Code
int main()
{
    Node* root = newNode(7);
    root->left = newNode(5);
    root->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right = newNode(1);
    root->left->left->left = newNode(2);
    root->left->left->right = newNode(11);
    root->right->left = newNode(3);
    root->right->right = newNode(9);
    root->right->right->right = newNode(13);
    root->right->right->left = newNode(10);
    root->right->right->right->left = newNode(4);
    root->right->right->right->right = newNode(12);
 
    int L = 3;
    cout << levelOrderTraversal(root, L) << endl;
    return 0;
}
// This code is contributed by Kirti Agarwal


Java




// Java program to find number of full nodes
// at a given level
import java.util.LinkedList;
import java.util.Queue;
 
// A binary tree node
class Node {
    int data;
    Node left;
    Node right;
     
    // constructor to initialize data and left and right pointers
    Node(int data) {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
public class Main {
    // function to return the number of full nodes
    static int levelOrderTraversal(Node root, int L) {
        int count = 0;
        int level = 0;
        Queue<Node> q = new LinkedList<Node>();
        q.add(root);
        while (!q.isEmpty()) {
            level++;
            int n = q.size();
            for (int i = 0; i < n; i++) {
                Node front_node = q.poll();
                if (L == level && front_node.left != null
                    && front_node.right != null) {
                    count++;
                }
                if (front_node.left != null)
                    q.add(front_node.left);
                if (front_node.right != null)
                    q.add(front_node.right);
            }
        }
        return count;
    }
     
    // Driver Code
    public static void main(String[] args) {
        Node root = new Node(7);
        root.left = new Node(5);
        root.right = new Node(6);
        root.left.left = new Node(8);
        root.left.right = new Node(1);
        root.left.left.left = new Node(2);
        root.left.left.right = new Node(11);
        root.right.left = new Node(3);
        root.right.right = new Node(9);
        root.right.right.right = new Node(13);
        root.right.right.left = new Node(10);
        root.right.right.right.left = new Node(4);
        root.right.right.right.right = new Node(12);
 
        int L = 3;
        System.out.println(levelOrderTraversal(root, L));
    }
}


Python




# Python3 program to find number of
# full nodes at a given level
 
# a binary tree node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
         
# function to allocate memory for a new node
def newNode(data):
    return Node(data)
 
# function to return the number
# of nodes
def levelOrderTraversal(root, L):
    count = 0
    level = 0
    q = []
    q.append(root)
    while(len(q) > 0):
        level += 1
        n = len(q)
        for i in range(n):
            front_node = q.pop(0)
            if(L == level and front_node.left is not None and front_node.right is not None):
                count += 1
            if(front_node.left is not  None):
                q.append(front_node.left)
            if(front_node.right is not None):
                q.append(front_node.right)
         
    return count;
 
#driver code to test above functions
root = newNode(7);
root.left = newNode(5);
root.right = newNode(6);
root.left.left = newNode(8);
root.left.right = newNode(1);
root.left.left.left = newNode(2);
root.left.left.right = newNode(11);
root.right.left = newNode(3);
root.right.right = newNode(9);
root.right.right.right = newNode(13);
root.right.right.left = newNode(10);
root.right.right.right.left = newNode(4);
root.right.right.right.right = newNode(12);
 
L = 3;
 
print(levelOrderTraversal(root, L))


Javascript




// JavaScript program to find number of full nodes
// at a given level
// a binary tree node
class Node{
    constructor(data){
        this.data = data;
        this.left = this.right = null;
    }
}
 
// function to allcated memory for a new node
function newNode(data){
    return new Node(data);
}
 
// function to return the number
// of nodes
function levelOrderTraversal(root, L){
    let count = 0;
    let level = 0;
    let q = [];
    q.push(root);
    while(q.length > 0){
        level++;
        let n = q.length;
        for(let i = 0; i<n; i++){
            let front_node = q.shift();
            if(L == level && front_node.left != null
            && front_node.right != null){
                count++;
            }
            if(front_node.left) q.push(front_node.left);
            if(front_node.right) q.push(front_node.right);
        }
    }
    return count;
}
 
// driver code
let root = newNode(7);
root.left = newNode(5);
root.right = newNode(6);
root.left.left = newNode(8);
root.left.right = newNode(1);
root.left.left.left = newNode(2);
root.left.left.right = newNode(11);
root.right.left = newNode(3);
root.right.right = newNode(9);
root.right.right.right = newNode(13);
root.right.right.left = newNode(10);
root.right.right.right.left = newNode(4);
root.right.right.right.right = newNode(12);
 
let L = 3;
console.log(levelOrderTraversal(root, L));
 
// THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL2852002)


C#




using System;
using System.Collections.Generic;
 
// C# program to find number of full nodes
// at a given level
public class Node {
    public int data;
    public Node left, right;
 
    public Node(int data) {
        this.data = data;
        this.left = this.right = null;
    }
}
 
public class BinaryTree {
    public static int LevelOrderTraversal(Node root, int L) {
        int count = 0, level = 0;
        Queue<Node> q = new Queue<Node>();
        q.Enqueue(root);
        while (q.Count > 0) {
            level++;
            int n = q.Count;
            for (int i = 0; i < n; i++) {
                Node front_node = q.Dequeue();
                if (L == level && front_node.left != null && front_node.right != null) {
                    count++;
                }
                if (front_node.left != null) q.Enqueue(front_node.left);
                if (front_node.right != null) q.Enqueue(front_node.right);
            }
        }
        return count;
    }
 
    public static void Main() {
        Node root = new Node(7);
        root.left = new Node(5);
        root.right = new Node(6);
        root.left.left = new Node(8);
        root.left.right = new Node(1);
        root.left.left.left = new Node(2);
        root.left.left.right = new Node(11);
        root.right.left = new Node(3);
        root.right.right = new Node(9);
        root.right.right.right = new Node(13);
        root.right.right.left = new Node(10);
        root.right.right.right.left = new Node(4);
        root.right.right.right.right = new Node(12);
 
        int L = 3;
        Console.WriteLine(LevelOrderTraversal(root, L));
    }
}


Output

2

Time Complexity: O(N) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments