Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AICount N-length arrays made from first M natural numbers whose subarrays can...

Count N-length arrays made from first M natural numbers whose subarrays can be made palindromic by replacing less than half of its elements

Given two integer N and M, the task is to find the count of arrays of size N with elements from the range [1, M] in which all subarrays of length greater than 1 can be made palindromic by replacing less than half of its elements i.e., floor(length/2).

Examples: 

Input: N = 2, M = 3
Output: 6
Explanation:
There are 9 arrays possible of length 2 using values 1 to 3 i.e. [1, 1], [1, 2], [1, 3], [2, 1][2, 2], [2, 3], [3, 1], [3, 2], [3, 3].
All of these arrays except [1, 1], [2, 2] and [3, 3] have subarrays of length greater than 1 which requires 1 operation to make them palindrome. So the required answer is 9 – 3 = 6.

Input: N = 5, M = 10
Output: 30240

Approach: The problem can be solved based on the following observations:

  • It is possible that the maximum permissible number of operations required to make an array a palindrome is floor(size(array)/2).
  • It can be observed that by choosing a subarray, starting and ending with the same value, the number of operations needed to make it a palindrome will be less than floor(size of subarray)/2.
  • Therefore, the task is reduced to finding the number of arrays of size N using integer values in the range [1, M], which do not contain any duplicate elements, which can be easily done by finding the permutation of M with N i.e. MpN, which is equal to M * (M – 1) * (M – 2) * … * (M – N + 1).

Follow the steps below to solve the problem:

  1. Initialize an integer variable, say ans = 1.
  2. Traverse from i = 0 to N – 1 and update ans as ans = ans * (M-i)
  3. Print ans as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
 
// Function to find the number of arrays
// following the given condition
void noOfArraysPossible(ll N, ll M)
{
    // Initialize answer
    ll ans = 1;
 
    // Calculate nPm
    for (ll i = 0; i < N; ++i) {
        ans = ans * (M - i);
    }
 
    // Print ans
    cout << ans;
}
 
// Driver Code
int main()
{
 
    // Given N and M
    ll N = 2, M = 3;
 
    // Function Call
    noOfArraysPossible(N, M);
 
    return 0;
}


Java




// Java program for the above approach
class GFG
{
 
// Function to find the number of arrays
// following the given condition
static void noOfArraysPossible(int N, int M)
{
    // Initialize answer
    int ans = 1;
 
    // Calculate nPm
    for (int i = 0; i < N; ++i)
    {
        ans = ans * (M - i);
    }
 
    // Print ans
    System.out.print(ans);
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given N and M
    int N = 2, M = 3;
 
    // Function Call
    noOfArraysPossible(N, M);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program for the above approach
 
# Function to find the number of arrays
# following the given condition
def noOfArraysPossible(N, M):
     
    # Initialize answer
    ans = 1
  
    # Calculate nPm
    for i in range(N):
        ans = ans * (M - i)
         
    # Print ans
    print(ans)
  
# Driver Code
if __name__ == "__main__" :
     
    # Given N and M
    N = 2
    M = 3
     
    # Function Call
    noOfArraysPossible(N, M)
     
# This code is contributed by jana_sayantan


C#




// C# program to implement
// the above approach 
using System;
 
class GFG{
      
// Function to find the number of arrays
// following the given condition
static void noOfArraysPossible(int N, int M)
{
    // Initialize answer
    int ans = 1;
  
    // Calculate nPm
    for (int i = 0; i < N; ++i)
    {
        ans = ans * (M - i);
    }
  
    // Print ans
    Console.Write(ans);
}
  
// Driver Code
public static void Main()
{
    // Given N and M
    int N = 2, M = 3;
  
    // Function Call
    noOfArraysPossible(N, M);
}
}
 
// This code is contributed by susmitakundugoaldanga


Javascript




<script>
// javascript program for the above approach   
// Function to find the number of arrays
 
    // following the given condition
    function noOfArraysPossible(N , M)
    {
     
        // Initialize answer
        var ans = 1;
 
        // Calculate nPm
        for (i = 0; i < N; ++i) {
            ans = ans * (M - i);
        }
 
        // Print ans
        document.write(ans);
    }
 
    // Driver Code
     
        // Given N and M
        var N = 2, M = 3;
 
        // Function Call
        noOfArraysPossible(N, M);
 
// This code is contributed by todaysgaurav
</script>


Output: 

6

 

Time Complexity: O(N) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments