Given two arrays A[] and B[] consisting of N integers representing the amount of each type of candies and maximum consumable limit respectively, and an integer M which represents the number of unknown candies added, the task is to find the maximum count of candies one person can consume in a blindfold.
Examples:
Input: A[] = {4, 5, 2, 3}, B[] = {8, 13, 6, 4}, M = 5
Output: 4
Explanation: Directly consume all 3 candies of 4th type and consume one more candy which can be any of type. Therefore, one can only consume total of 4 candies safely.Input: A[] = {2, 4, 1, 9, 6}, B[] = {8, 7, 3, 12, 7}, M = 0
Output: 2
Explanation: One can directly consume all candies as all types of candies are within safe limits.
Approach: The given problem can be solved based on the following observations:
- If for every type of candies, A[i] + M ? B[i], then it is safe to consume all available candies.
- Otherwise, one can only consume minimum of min(A[i] + M, B[i]) for all 0 ? i < N.
Follow the steps below to solve the problem:
- Initialize two variables, say ans and total, to store the count of maximum candies safe to consume and the total count of candies
- Initialize a variable, say allSafe = true, to check if all types of candies are safe to consume or not.
- Traverse over the range [0, N – 1] and if A[i] + M > B[i], then set allSafe = false and update ans = min(ans, B[i]). Otherwise, update ans = min(ans, A[i]).
- If allSafe is true, then print the total sum of array A[].
- Otherwise, print the result in ans.
Below is the implementation of the above approach:
C++
// C++ implementation// of the above approach#include <bits/stdc++.h>using namespace std;// Function to find the count of// maximum consumable candiesint maximumCandy(int candies[], int safety[], int N, int M){ // Store the count of total candies int total = 0; // Stores the count of maximum // consumable candies int ans = INT_MAX; // Checks if it is safe // to consume all candies bool all_safe = true; // Traverse the array arr[] for (int i = 0; i < N; i++) { // If A[i] + M is greater than B[i] if (candies[i] + M > safety[i]) { // Mark all_safe as false all_safe = false; // Update ans ans = min(ans, safety[i]); } else { // Update ans ans = min(ans, candies[i] + M); } // Increment total by A[i] total += candies[i]; } // If all_safe is true if (all_safe) return total; // Otherwise, else return ans;}// Driver Codeint main(){ int A[] = { 2, 4, 1, 9, 6 }; int B[] = { 8, 7, 3, 12, 7 }; int M = 0; int N = sizeof(A) / sizeof(A[0]); // Function call to find // maximum consumable candies cout << maximumCandy(A, B, N, M); return 0;} |
Java
// Java implementation// of the above approachpublic class GFG{ // Function to find the count of // maximum consumable candies static int maximumCandy(int []candies, int []safety, int N, int M) { // Store the count of total candies int total = 0; // Stores the count of maximum // consumable candies int ans = Integer.MAX_VALUE; // Checks if it is safe // to consume all candies boolean all_safe = true; // Traverse the array arr[] for (int i = 0; i < N; i++) { // If A[i] + M is greater than B[i] if (candies[i] + M > safety[i]) { // Mark all_safe as false all_safe = false; // Update ans ans = Math.min(ans, safety[i]); } else { // Update ans ans = Math.min(ans, candies[i] + M); } // Increment total by A[i] total += candies[i]; } // If all_safe is true if (all_safe) return total; // Otherwise, else return ans; } // Driver Code public static void main (String[] args) { int A[] = { 4, 5, 2, 3 }; int B[] = { 8, 13, 6, 4 }; int M = 5; int N = A.length; // Function call to find // maximum consumable candies System.out.println(maximumCandy(A, B, N, M)); }}// This code is contributed by AnkThon |
Python3
# Python3 implementation# of the above approach# Function to find the count of# maximum consumable candiesdef maximumCandy(candies, safety, N, M): # Store the count of total candies total = 0 # Stores the count of maximum # consumable candies ans = 10**8 # Checks if it is safe # to consume all candies all_safe = True # Traverse the array arr for i in range(N): # If A[i] + M is greater than B[i] if (candies[i] + M > safety[i]): # Mark all_safe as false all_safe = False # Update ans ans = min(ans, safety[i]) else: # Update ans ans = min(ans, candies[i] + M) # Increment total by A[i] total += candies[i] # If all_safe is true if (all_safe): return total # Otherwise, else: return ans# Driver Codeif __name__ == '__main__': A = [4, 5, 2, 3] B = [ 8, 13, 6, 4] M = 5 N = len(A) # Function call to find # maximum consumable candies print (maximumCandy(A, B, N, M)) # This code is contributed by mohit kumar 29. |
C#
// C# implementation// of the above approachusing System;class GFG { // Function to find the count of // maximum consumable candies static int maximumCandy(int[] candies, int[] safety, int N, int M) { // Store the count of total candies int total = 0; // Stores the count of maximum // consumable candies int ans = Int32.MaxValue; // Checks if it is safe // to consume all candies bool all_safe = true; // Traverse the array arr[] for (int i = 0; i < N; i++) { // If A[i] + M is greater than B[i] if (candies[i] + M > safety[i]) { // Mark all_safe as false all_safe = false; // Update ans ans = Math.Min(ans, safety[i]); } else { // Update ans ans = Math.Min(ans, candies[i] + M); } // Increment total by A[i] total += candies[i]; } // If all_safe is true if (all_safe) return total; // Otherwise, else return ans; } // Driver code static void Main() { int[] A = { 4, 5, 2, 3 }; int[] B = { 8, 13, 6, 4 }; int M = 5; int N = A.Length; // Function call to find // maximum consumable candies Console.WriteLine(maximumCandy(A, B, N, M)); }}// This code is contributed by divyeshrabadiya07. |
Javascript
<script>// javascript program of the above approach // Function to find the count of // maximum consumable candies function maximumCandy(candies, safety, N, M) { // Store the count of total candies let total = 0; // Stores the count of maximum // consumable candies let ans = Number.MAX_VALUE; // Checks if it is safe // to consume all candies let all_safe = true; // Traverse the array arr[] for (let i = 0; i < N; i++) { // If A[i] + M is greater than B[i] if (candies[i] + M > safety[i]) { // Mark all_safe as false all_safe = false; // Update ans ans = Math.min(ans, safety[i]); } else { // Update ans ans = Math.min(ans, candies[i] + M); } // Increment total by A[i] total += candies[i]; } // If all_safe is true if (all_safe) return total; // Otherwise, else return ans; } // Driver Code let A = [ 4, 5, 2, 3 ]; let B = [ 8, 13, 6, 4 ]; let M = 5; let N = A.length; // Function call to find // maximum consumable candies document.write(maximumCandy(A, B, N, M));</script> |
4
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
