Given an integer N, the task is to find the number of distinct bracket sequences that can be formed using 2 * N brackets such that the sequence is not N-periodic.
A bracket sequence str of length 2 * N is said to be N-periodic if the sequence can be split into two equal substrings having same regular bracket sequence.
A regular bracket sequence is a sequence in the following way:
- An empty string is a regular bracket sequence.
- If s & t are regular bracket sequences, then s + t is a regular bracket sequence.
Examples:
Input: N = 3Â
Output: 5Â
Explanation:Â
There will be 5 distinct regular bracket sequences of length 2 * N = ()()(), ()(()), (())(), (()()), ((()))Â
Now, none of the sequences are N-periodic. Therefore, the output is 5.Input: N = 4Â
Output: 12Â
Explanation:Â
There will be 14 distinct regular bracket sequences of length 2*N which areÂ
()()()(), ()()(()), ()(())(), ()(()()), ()((())), (())()(), (())(()), (()())(), (()()()), (()(())), ((()))(), ((())()), ((()())), (((())))Â
Out of these 14 regular sequences, two of them are N periodic which areÂ
()()()() and (())(()). They have a period of N.Â
Therefore, the distinct regular bracket sequences of length 2 * N which are not N-periodic are 14 – 2 = 12.
Approach: The idea is to calculate the total number of regular bracket sequences possible of length 2 * N and then to subtract the number of bracket sequences which are N-periodic from it. Below are the steps:
- To find the number of regular bracket sequences of length 2*N, use the Catalan number formula.
- For a sequence of length 2*N to be N periodic, N should be even because if N is odd then the sequence of length 2*N cannot be a regular sequence and have a period of N at the same time.
- Since the concatenation of two similar non-regular bracket sequences cannot make a sequence regular, so both subsequences of length N should be regular.
- Reduce the number of regular bracket sequences of length N(if N is even) from the number of regular bracket sequences of length 2*N to get the desired result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach Â
#include <bits/stdc++.h> using namespace std; Â
// Function that finds the value of // Binomial Coefficient C(n, k) unsigned long int binomialCoeff(unsigned int n, Â Â Â Â Â Â Â Â Â Â Â Â Â Â unsigned int k) { Â Â Â Â unsigned long int res = 1; Â
    // Since C(n, k) = C(n, n - k)     if (k > n - k)         k = n - k; Â
    // Calculate the value of     // [n*(n - 1)*---*(n - k + 1)] /     // [k*(k - 1)*---*1]     for ( int i = 0; i < k; ++i) {         res *= (n - i);         res /= (i + 1);     } Â
    // Return the C(n, k)     return res; } Â
// Binomial coefficient based function to // find nth catalan number in O(n) time unsigned long int catalan(unsigned int n) {     // Calculate value of 2nCn     unsigned long int c         = binomialCoeff(2 * n, n); Â
    // Return C(2n, n)/(n+1)     return c / (n + 1); } Â
// Function to find possible ways to // put balanced parenthesis in an // expression of length n unsigned long int findWays(unsigned n) {     // If n is odd, not possible to     // create any valid parentheses     if (n & 1)         return 0; Â
    // Otherwise return n/2th     // Catalan Number     return catalan(n / 2); } Â
void countNonNPeriodic( int N) { Â
    // Difference between counting ways     // of 2*N and N is the result     cout << findWays(2 * N)                 - findWays(N); } Â
// Driver Code int main() { Â Â Â Â // Given value of N Â Â Â Â int N = 4; Â
    // Function Call     countNonNPeriodic(N); Â
    return 0; } |
Java
// Java program for above approach import java.io.*; Â
class GFG{ Â Â Â Â Â // Function that finds the value of // Binomial Coefficient C(n, k) static long binomialCoeff( int n, int k) { Â Â Â Â long res = 1 ; Â
    // Since C(n, k) = C(n, n - k)     if (k > n - k)         k = n - k; Â
    // Calculate the value of     // [n*(n - 1)*---*(n - k + 1)] /     // [k*(k - 1)*---*1]     for ( int i = 0 ; i < k; ++i)     {         res *= (n - i);         res /= (i + 1 );     } Â
    // Return the C(n, k)     return res; } Â
// Binomial coefficient based function to // find nth catalan number in O(n) time static long catalan( int n) {          // Calculate value of 2nCn     long c = binomialCoeff( 2 * n, n); Â
    // Return C(2n, n)/(n+1)     return c / (n + 1 ); } Â
// Function to find possible ways to // put balanced parenthesis in an // expression of length n static long findWays( int n) {          // If n is odd, not possible to     // create any valid parentheses     if ((n & 1 ) == 1 )         return 0 ; Â
    // Otherwise return n/2th     // Catalan Number     return catalan(n / 2 ); } Â
static void countNonNPeriodic( int N) {          // Difference between counting ways     // of 2*N and N is the result     System.out.println(findWays( 2 * N) -                        findWays(N)); } Â
// Driver code public static void main (String[] args) {          // Given value of N     int N = 4 ;          // Function call     countNonNPeriodic(N); } } Â
// This code is contributed by offbeat |
Python3
# Python3 program for # the above approach Â
# Function that finds the value of # Binomial Coefficient C(n, k) def binomialCoeff(n, k):     res = 1       # Since C(n, k) = C(n, n - k)     if (k > n - k):         k = n - k       # Calculate the value of     # [n*(n - 1)*---*(n - k + 1)] /     # [k*(k - 1)*---*1]     for i in range (k):              res = res * (n - i)         res = res / / (i + 1 )       # Return the C(n, k)     return res   # Binomial coefficient based function to # find nth catalan number in O(n) time def catalan(n):           # Calculate value of 2nCn     c = binomialCoeff( 2 * n, n)       # Return C(2n, n)/(n+1)     return c / / (n + 1 )   # Function to find possible ways to # put balanced parenthesis in an # expression of length n def findWays(n): Â
    # If n is odd, not possible to     # create any valid parentheses     if ((n & 1 ) = = 1 ):         return 0            # Otherwise return n/2th     # Catalan Number     return catalan(n / / 2 )    def countNonNPeriodic(N):           # Difference between counting ways     # of 2*N and N is the result     print (findWays( 2 * N) - findWays(N)) Â
# Driver code # Given value of N N = 4 Â Â Â Â Â Â # Function call countNonNPeriodic(N) Â
# This code is contributed by divyeshrabadiya07 |
C#
// C# program for above approach using System; using System.Collections.Generic;Â Â
class GFG{    // Function that finds the value of // Binomial Coefficient C(n, k) static long binomialCoeff( int n, int k) {     long res = 1;       // Since C(n, k) = C(n, n - k)     if (k > n - k)         k = n - k;       // Calculate the value of     // [n*(n - 1)*---*(n - k + 1)] /     // [k*(k - 1)*---*1]     for ( int i = 0; i < k; ++i)     {         res *= (n - i);         res /= (i + 1);     }       // Return the C(n, k)     return res; }   // Binomial coefficient based function to // find nth catalan number in O(n) time static long catalan( int n) {           // Calculate value of 2nCn     long c = binomialCoeff(2 * n, n);       // Return C(2n, n)/(n+1)     return c / (n + 1); }   // Function to find possible ways to // put balanced parenthesis in an // expression of length n static long findWays( int n) {           // If n is odd, not possible to     // create any valid parentheses     if ((n & 1) == 1)         return 0;       // Otherwise return n/2th     // Catalan Number     return catalan(n / 2); }   static void countNonNPeriodic( int N) {           // Difference between counting ways     // of 2*N and N is the result     Console.Write(findWays(2 * N) -                   findWays(N)); }    // Driver Code public static void Main( string [] args) {           // Given value of N     int N = 4;           // Function call     countNonNPeriodic(N); } } Â
// This code is contributed by rutvik_56 |
Javascript
<script> Â
// Javascript program for the above approach Â
// Function that finds the value of // Binomial Coefficient C(n, k) function binomialCoeff(n, k) { Â Â Â Â let res = 1; Â
    // Since C(n, k) = C(n, n - k)     if (k > n - k)         k = n - k; Â
    // Calculate the value of     // [n*(n - 1)*---*(n - k + 1)] /     // [k*(k - 1)*---*1]     for (let i = 0; i < k; ++i) {         res *= (n - i);         res /= (i + 1);     } Â
    // Return the C(n, k)     return res; } Â
// Binomial coefficient based function to // find nth catalan number in O(n) time function catalan(n) {     // Calculate value of 2nCn     let c = binomialCoeff(2 * n, n); Â
    // Return C(2n, n)/(n+1)     return c / (n + 1); } Â
// Function to find possible ways to // put balanced parenthesis in an // expression of length n function findWays(n) {     // If n is odd, not possible to     // create any valid parentheses     if (n & 1)         return 0; Â
    // Otherwise return n/2th     // Catalan Number     return catalan(n / 2); } Â
function countNonNPeriodic(N) { Â
    // Difference between counting ways     // of 2*N and N is the result     document.write(findWays(2 * N)                 - findWays(N)); } Â
// Driver Code Â
    // Given value of N     let N = 4; Â
    // Function Call     countNonNPeriodic(N); Â
Â
// This code is contributed by Mayank Tyagi Â
</script> |
12
Time Complexity: O(N)Â
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!