Given two string S and Q. The task is to count the number of the common subsequence in S and T.
Examples:
Input : S = “ajblqcpdz”, T = “aefcnbtdi”
Output : 11
Common subsequences are : { “a”, “b”, “c”, “d”, “ab”, “bd”, “ad”, “ac”, “cd”, “abd”, “acd” }Input : S = “a”, T = “ab”
Output : 1
To find the number of common subsequences in two string, say S and T, we use Dynamic Programming by defining a 2D array dp[][], where dp[i][j] is the number of common subsequences in the string S[0…i-1] and T[0….j-1].
Now, we can define dp[i][j] as = dp[i][j-1] + dp[i-1][j] + 1, when S[i-1] is equal to T[j-1]
This is because when S[i-1] == S[j-1], using the above fact all the previous common sub-sequences are doubled as they get appended by one more character. Both dp[i][j-1] and dp[i-1][j] contain dp[i-1][j-1] and hence it gets added two times in our recurrence which takes care of doubling of count of all previous common sub-sequences. Addition of 1 in recurrence is for the latest character match : common sub-sequence made up of s1[i-1] and s2[j-1] = dp[i-1][j] + dp[i][j-1] – dp[i-1][j-1], when S[i-1] is not equal to T[j-1]
Here we subtract dp[i-1][j-1] once because it is present in both dp[i][j – 1] and dp[i – 1][j] and gets added twice.
Implementation:
C++
// C++ program to count common subsequence in two strings #include <bits/stdc++.h> using namespace std; // return the number of common subsequence in // two strings int CommonSubsequencesCount(string s, string t) { int n1 = s.length(); int n2 = t.length(); int dp[n1+1][n2+1]; for ( int i = 0; i <= n1; i++) { for ( int j = 0; j <= n2; j++) { dp[i][j] = 0; } } // for each character of S for ( int i = 1; i <= n1; i++) { // for each character in T for ( int j = 1; j <= n2; j++) { // if character are same in both // the string if (s[i - 1] == t[j - 1]) dp[i][j] = 1 + dp[i][j - 1] + dp[i - 1][j]; else dp[i][j] = dp[i][j - 1] + dp[i - 1][j] - dp[i - 1][j - 1]; } } return dp[n1][n2]; } // Driver Program int main() { string s = "ajblqcpdz" ; string t = "aefcnbtdi" ; cout << CommonSubsequencesCount(s, t) << endl; return 0; } |
Java
// Java program to count common subsequence in two strings public class GFG { // return the number of common subsequence in // two strings static int CommonSubsequencesCount(String s, String t) { int n1 = s.length(); int n2 = t.length(); int dp[][] = new int [n1+ 1 ][n2+ 1 ]; char ch1,ch2 ; for ( int i = 0 ; i <= n1; i++) { for ( int j = 0 ; j <= n2; j++) { dp[i][j] = 0 ; } } // for each character of S for ( int i = 1 ; i <= n1; i++) { // for each character in T for ( int j = 1 ; j <= n2; j++) { ch1 = s.charAt(i - 1 ); ch2 = t.charAt(j - 1 ); // if character are same in both // the string if (ch1 == ch2) dp[i][j] = 1 + dp[i][j - 1 ] + dp[i - 1 ][j]; else dp[i][j] = dp[i][j - 1 ] + dp[i - 1 ][j] - dp[i - 1 ][j - 1 ]; } } return dp[n1][n2]; } // Driver code public static void main (String args[]){ String s = "ajblqcpdz" ; String t = "aefcnbtdi" ; System.out.println(CommonSubsequencesCount(s, t)); } // This code is contributed by ANKITRAI1 } |
Python3
# Python3 program to count common # subsequence in two strings # return the number of common subsequence # in two strings def CommonSubsequencesCount(s, t): n1 = len (s) n2 = len (t) dp = [[ 0 for i in range (n2 + 1 )] for i in range (n1 + 1 )] # for each character of S for i in range ( 1 , n1 + 1 ): # for each character in T for j in range ( 1 , n2 + 1 ): # if character are same in both # the string if (s[i - 1 ] = = t[j - 1 ]): dp[i][j] = ( 1 + dp[i][j - 1 ] + dp[i - 1 ][j]) else : dp[i][j] = (dp[i][j - 1 ] + dp[i - 1 ][j] - dp[i - 1 ][j - 1 ]) return dp[n1][n2] # Driver Code s = "ajblqcpdz" t = "aefcnbtdi" print (CommonSubsequencesCount(s, t)) # This code is contributed by Mohit Kumar |
C#
// C# program to count common // subsequence in two strings using System; class GFG { // return the number of common // subsequence in two strings static int CommonSubsequencesCount( string s, string t) { int n1 = s.Length; int n2 = t.Length; int [,] dp = new int [n1 + 1, n2 + 1]; for ( int i = 0; i <= n1; i++) { for ( int j = 0; j <= n2; j++) { dp[i, j] = 0; } } // for each character of S for ( int i = 1; i <= n1; i++) { // for each character in T for ( int j = 1; j <= n2; j++) { // if character are same in // both the string if (s[i - 1] == t[j - 1]) dp[i, j] = 1 + dp[i, j - 1] + dp[i - 1, j]; else dp[i, j] = dp[i, j - 1] + dp[i - 1, j] - dp[i - 1, j - 1]; } } return dp[n1, n2]; } // Driver code public static void Main () { string s = "ajblqcpdz" ; string t = "aefcnbtdi" ; Console.Write(CommonSubsequencesCount(s, t)); } } // This code is contributed // by ChitraNayal |
Javascript
<script> // Javascript program to count common subsequence in two strings // return the number of common subsequence in // two strings function CommonSubsequencesCount(s, t) { var n1 = s.length; var n2 = t.length; var dp = Array.from(Array(n1+1), ()=> Array(n2+1)); for ( var i = 0; i <= n1; i++) { for ( var j = 0; j <= n2; j++) { dp[i][j] = 0; } } // for each character of S for ( var i = 1; i <= n1; i++) { // for each character in T for ( var j = 1; j <= n2; j++) { // if character are same in both // the string if (s[i - 1] == t[j - 1]) dp[i][j] = 1 + dp[i][j - 1] + dp[i - 1][j]; else dp[i][j] = dp[i][j - 1] + dp[i - 1][j] - dp[i - 1][j - 1]; } } return dp[n1][n2]; } // Driver Program var s = "ajblqcpdz" ; var t = "aefcnbtdi" ; document.write( CommonSubsequencesCount(s, t)); </script> |
PHP
<?php // PHP program to count common subsequence // in two strings // return the number of common subsequence // in two strings function CommonSubsequencesCount( $s , $t ) { $n1 = strlen ( $s ); $n2 = strlen ( $t ); $dp = array (); for ( $i = 0; $i <= $n1 ; $i ++) { for ( $j = 0; $j <= $n2 ; $j ++) { $dp [ $i ][ $j ] = 0; } } // for each character of S for ( $i = 1; $i <= $n1 ; $i ++) { // for each character in T for ( $j = 1; $j <= $n2 ; $j ++) { // if character are same in both // the string if ( $s [ $i - 1] == $t [ $j - 1]) $dp [ $i ][ $j ] = 1 + $dp [ $i ][ $j - 1] + $dp [ $i - 1][ $j ]; else $dp [ $i ][ $j ] = $dp [ $i ][ $j - 1] + $dp [ $i - 1][ $j ] - $dp [ $i - 1][ $j - 1]; } } return $dp [ $n1 ][ $n2 ]; } // Driver Code $s = "ajblqcpdz" ; $t = "aefcnbtdi" ; echo CommonSubsequencesCount( $s , $t ) . "\n" ; // This code is contributed // by Akanksha Rai ?> |
11
Complexity Analysis:
- Time Complexity : O(n1 * n2)
- Auxiliary Space : O(n1 * n2)
Efficient approach : Space optimization
In previous approach the current value dp[i][j] is only depend upon the current and previous row values of DP. So to optimize the space complexity we use a single 1D array to store the computations.
Implementation steps:
- Create a 1D vector prev of size n2+1 and initialize it with 0.
- Set a base case by initializing the values of prev.
- Now iterate over subproblems by the help of nested loop and get the current value from previous computations.
- Now Create a temporary 1d vector curr used to store the current values from previous computations.
- After every iteration assign the value of curr to prev for further iteration.
- At last return and print the final answer stored in prev[n2]
Implementation:
C++
// C++ program to count common subsequence in two strings #include <bits/stdc++.h> using namespace std; // return the number of common subsequence in // two strings int CommonSubsequencesCount(string s, string t) { int n1 = s.length(); int n2 = t.length(); // to store previous computaions of subproblems vector< int >prev(n2+1 , 0); // for each character of S for ( int i = 1; i <= n1; i++) { vector< int >curr(n2 +1 , 0); // for each character in T for ( int j = 1; j <= n2; j++) { // if character are same in both // the string if (s[i - 1] == t[j - 1]) curr[j] = 1 + curr[j - 1] + prev[j]; else curr[j] = curr[j - 1] + prev[j] - prev[j - 1]; } // assigning values // for iterate further prev = curr; } // return final answer return prev[n2]; } // Driver Program int main() { string s = "ajblqcpdz" ; string t = "aefcnbtdi" ; cout << CommonSubsequencesCount(s, t) << endl; return 0; } |
Java
import java.util.*; public class Main { // Function to count the number of common subsequences in two strings public static int CommonSubsequencesCount(String s, String t) { int n1 = s.length(); int n2 = t.length(); // To store previous computations of subproblems int [] prev = new int [n2 + 1 ]; // For each character of S for ( int i = 1 ; i <= n1; i++) { int [] curr = new int [n2 + 1 ]; // For each character in T for ( int j = 1 ; j <= n2; j++) { // If characters are same in both the strings if (s.charAt(i - 1 ) == t.charAt(j - 1 )) { curr[j] = 1 + curr[j - 1 ] + prev[j]; } else { curr[j] = curr[j - 1 ] + prev[j] - prev[j - 1 ]; } } // Assigning values for further iterations prev = curr; } // Return the final answer return prev[n2]; } // Driver program public static void main(String[] args) { String s = "ajblqcpdz" ; String t = "aefcnbtdi" ; System.out.println(CommonSubsequencesCount(s, t)); } } |
Python3
def CommonSubsequencesCount(s, t): n1 = len (s) n2 = len (t) # to store previous computations of subproblems prev = [ 0 ] * (n2 + 1 ) # for each character of S for i in range ( 1 , n1 + 1 ): curr = [ 0 ] * (n2 + 1 ) # for each character in T for j in range ( 1 , n2 + 1 ): # if characters are the same in both strings if s[i - 1 ] = = t[j - 1 ]: curr[j] = 1 + curr[j - 1 ] + prev[j] else : curr[j] = curr[j - 1 ] + prev[j] - prev[j - 1 ] # assigning values for iteration prev = curr # return the final answer return prev[n2] # Driver Program if __name__ = = "__main__" : s = "ajblqcpdz" t = "aefcnbtdi" print (CommonSubsequencesCount(s, t)) |
C#
using System; public class CommonSubsequenceCount { // return the number of common subsequence in // two strings public static int Count( string s, string t) { int n1 = s.Length; int n2 = t.Length; // to store previous computations of subproblems int [] prev = new int [n2 + 1]; // for each character of S for ( int i = 1; i <= n1; i++) { int [] curr = new int [n2 + 1]; // for each character in T for ( int j = 1; j <= n2; j++) { // if characters are the same in both // strings if (s[i - 1] == t[j - 1]) curr[j] = 1 + curr[j - 1] + prev[j]; else curr[j] = curr[j - 1] + prev[j] - prev[j - 1]; } // assign values for further iteration prev = curr; } // return final answer return prev[n2]; } public static void Main() { string s = "ajblqcpdz" ; string t = "aefcnbtdi" ; Console.WriteLine(Count(s, t)); } } |
Javascript
// Javascript program to count common subsequence in two strings // return the number of common subsequence in // two strings function CommonSubsequencesCount(s, t) { let n1 = s.length; let n2 = t.length; // to store previous computaions of subproblems let prev = new Array(n2+1).fill(0); // for each character of s for (let i = 1; i <= n1; i++) { let curr = new Array(n2 + 1).fill(0); // for each character in t for (let j = 1; j <= n2; j++) { // if character are same in both // the string if (s[i - 1] === t[j - 1]) curr[j] = 1 + curr[j - 1] + prev[j]; else curr[j] = curr[j - 1] + prev[j] - prev[j - 1]; } // assigning values // for iterate further prev = curr; } // return final answer return prev[n2]; } // Driver Program let s = "ajblqcpdz" ; let t = "aefcnbtdi" ; console.log(CommonSubsequencesCount(s, t)); |
11
Time Complexity : O(n1 * n2)
Auxiliary Space : O(n2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!