Given two integer and , the task is to find the count of common factors of two numbers where factors are prime.
Examples:
Input: A = 6, B = 12
Output: 2
2 and 3 are the only common prime divisors of 6 and 12
Input: A = 4, B = 8
Output: 1
Naive Approach: Iterate from 1 to min(A, B) and check whether i is prime and a factor of both A and B, if yes then increment the counter.
Efficient Approach is to do following:
- Find Greatest Common Divisor (gcd) of the given numbers.
- Find prime factors of the GCD.
Below is the implementation of the above approach:
C++
// CPP program to count common prime factors // of a and b. #include <bits/stdc++.h> using namespace std; // A function to count all prime factors of // a given number x int countPrimeFactors( int x) { int res = 0; if (x % 2 == 0) { res++; // Print the number of 2s that divide x while (x % 2 == 0) x = x / 2; } // x must be odd at this point. So we // can skip one element (Note i = i +2) for ( int i = 3; i <= sqrt (x); i = i + 2) { if (x % i == 0) { // While i divides x, print i and // divide x res++; while (x % i == 0) x = x / i; } } // This condition is to handle the case // when x is a prime number greater than 2 if (x > 2) res++; return res; } // Count of common prime factors int countCommonPrimeFactors( int a, int b) { // Get the GCD of the given numbers int gcd = __gcd(a, b); // Count prime factors in GCD return countPrimeFactors(gcd); } // Driver code int main() { int a = 6, b = 12; cout << countCommonPrimeFactors(a, b); return 0; } |
C
// C program to count common prime factors // of a and b. #include <stdio.h> #include <math.h> // A function to count all prime factors of // a given number x int countPrimeFactors( int x) { int res = 0; if (x % 2 == 0) { res++; // Print the number of 2s that divide x while (x % 2 == 0) x = x / 2; } // x must be odd at this point. So we // can skip one element (Note i = i +2) for ( int i = 3; i <= sqrt (x); i = i + 2) { if (x % i == 0) { // While i divides x, print i and // divide x res++; while (x % i == 0) x = x / i; } } // This condition is to handle the case // when x is a prime number greater than 2 if (x > 2) res++; return res; } // Count of common prime factors int countCommonPrimeFactors( int a, int b) { int gcd, i; // Get the GCD of the given numbers for (i = 1; i <= a && i <= b; ++i) { // Checks if i is factor of both integers if (a % i == 0 && b % i == 0) gcd = i; } // Count prime factors in GCD return countPrimeFactors(gcd); } // Driver code int main() { int a = 6, b = 12; printf ( "%d" ,countCommonPrimeFactors(a, b)); return 0; } // This code is contributed by kothavvsaakash. |
Java
// Java program to count common prime factors // of a and b. import java.io.*; class GFG { // Recursive function to return gcd of a and b static int __gcd( int a, int b) { // Everything divides 0 if (a == 0 ) return b; if (b == 0 ) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a-b, b); return __gcd(a, b-a); } // A function to count all prime factors of // a given number x static int countPrimeFactors( int x) { int res = 0 ; if (x % 2 == 0 ) { res++; // Print the number of 2s that divide x while (x % 2 == 0 ) x = x / 2 ; } // x must be odd at this point. So we // can skip one element (Note i = i +2) for ( int i = 3 ; i <= Math.sqrt(x); i = i + 2 ) { if (x % i == 0 ) { // While i divides x, print i and // divide x res++; while (x % i == 0 ) x = x / i; } } // This condition is to handle the case // when x is a prime number greater than 2 if (x > 2 ) res++; return res; } // Count of common prime factors static int countCommonPrimeFactors( int a, int b) { // Get the GCD of the given numbers int gcd = __gcd(a, b); // Count prime factors in GCD return countPrimeFactors(gcd); } // Driver code public static void main (String[] args) { int a = 6 , b = 12 ; System.out.println(countCommonPrimeFactors(a, b)); } } // This code is contributed by inder_verma.. |
Python3
# Python 3 program to count common prime # factors of a and b. from math import sqrt,gcd # A function to count all prime # factors of a given number x def countPrimeFactors(x): res = 0 if (x % 2 = = 0 ): res + = 1 # Print the number of 2s that divide x while (x % 2 = = 0 ): x = x / 2 # x must be odd at this point. So we # can skip one element (Note i = i +2) k = int (sqrt(x)) + 1 for i in range ( 3 , k, 2 ): if (x % i = = 0 ): # While i divides x, print i # and divide x res + = 1 while (x % i = = 0 ): x = x / i # This condition is to handle the # case when x is a prime number # greater than 2 if (x > 2 ): res + = 1 return res # Count of common prime factors def countCommonPrimeFactors(a, b): # Get the GCD of the given numbers gcd__ = gcd(a, b) # Count prime factors in GCD return countPrimeFactors(gcd__) # Driver code if __name__ = = '__main__' : a = 6 b = 12 print (countCommonPrimeFactors(a, b)) # This code is contributed by # Surendra_Gangwar |
C#
// C# program to count common prime factors // of a and b. using System ; class GFG { // Recursive function to return gcd of a and b static int __gcd( int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a-b, b); return __gcd(a, b-a); } // A function to count all prime factors of // a given number x static int countPrimeFactors( int x) { int res = 0; if (x % 2 == 0) { res++; // Print the number of 2s that divide x while (x % 2 == 0) x = x / 2; } // x must be odd at this point. So we // can skip one element (Note i = i +2) for ( int i = 3; i <= Math.Sqrt(x); i = i + 2) { if (x % i == 0) { // While i divides x, print i and // divide x res++; while (x % i == 0) x = x / i; } } // This condition is to handle the case // when x is a prime number greater than 2 if (x > 2) res++; return res; } // Count of common prime factors static int countCommonPrimeFactors( int a, int b) { // Get the GCD of the given numbers int gcd = __gcd(a, b); // Count prime factors in GCD return countPrimeFactors(gcd); } // Driver code public static void Main() { int a = 6, b = 12; Console.WriteLine(countCommonPrimeFactors(a, b)); } // This code is contributed by Ryuga } |
PHP
<?php // PHP program to count common // prime factors of a and b. // Recursive function to return // gcd of a and b function __gcd( $a , $b ) { // Everything divides 0 if ( $a == 0) return $b ; if ( $b == 0) return $a ; // base case if ( $a == $b ) return $a ; // a is greater if ( $a > $b ) return __gcd(( $a - $b ), $b ); return __gcd( $a , ( $b - $a )); } // A function to count all prime // factors of a given number x function countPrimeFactors( $x ) { $res = 0; if ( $x % 2 == 0) { $res ++; // Print the number of 2s that // divide x while ( $x % 2 == 0) $x = $x / 2; } // x must be odd at this point. So we // can skip one element (Note i = i +2) for ( $i = 3; $i <= sqrt( $x ); $i = $i + 2) { if ( $x % $i == 0) { // While i divides x, print i // and divide x $res ++; while ( $x % $i == 0) $x = $x / $i ; } } // This condition is to handle the case // when x is a prime number greater than 2 if ( $x > 2) $res ++; return $res ; } // Count of common prime factors function countCommonPrimeFactors( $a , $b ) { // Get the GCD of the given numbers $gcd = __gcd( $a , $b ); // Count prime factors in GCD return countPrimeFactors( $gcd ); } // Driver code $a = 6; $b = 12; echo (countCommonPrimeFactors( $a , $b )); // This code is contributed by akt_mit.. ?> |
Javascript
<script> // Javascript program to count // common prime factors of a and b. // Recursive function to return // gcd of a and b function __gcd(a, b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a-b, b); return __gcd(a, b-a); } // A function to count all prime factors of // a given number x function countPrimeFactors(x) { let res = 0; if (x % 2 == 0) { res++; // Print the number of 2s that divide x while (x % 2 == 0) x = parseInt(x / 2, 10); } // x must be odd at this point. So we // can skip one element (Note i = i +2) for (let i = 3; i <= Math.sqrt(x); i = i + 2) { if (x % i == 0) { // While i divides x, print i and // divide x res++; while (x % i == 0) x = parseInt(x / i, 10); } } // This condition is to handle the case // when x is a prime number greater than 2 if (x > 2) res++; return res; } // Count of common prime factors function countCommonPrimeFactors(a, b) { // Get the GCD of the given numbers let gcd = __gcd(a, b); // Count prime factors in GCD return countPrimeFactors(gcd); } let a = 6, b = 12; document.write(countCommonPrimeFactors(a, b)); </script> |
2
Time Complexity: O(sqrtn*logn)
Auxiliary Space: O(1)
If there are multiple queries for counting common divisors, we can further optimize above code using Prime Factorization using Sieve O(log n) for multiple queries
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!