Given an array arr[] consisting of a permutation of first N natural numbers, the task is to find the minimum number of clockwise circular rotations of the array required to maximise the number of elements satisfying the condition arr[i] = i ( 1-based indexing ) where 1 ? i ? N.
Examples:
Input: arr[] = {4, 5, 1, 2, 3}
Output: 3
Explanation: Rotating the array thrice, the array modifies to {1, 2, 3, 4, 5}. All the array elements satisfy the condition arr[i] = i.Input: arr[] = {3, 4, 1, 5, 2}
Output: 2
Explanation: Rotating the array twice, the array modifies to {5, 2, 3, 4, 1}. Three array elements satisfy the condition arr[i] = i, which is the maximum possible for the given array.
Approach: Follow the steps below to solve the problem:
- Initialize two integers maxi and ans, and two arrays new_arr[] and freq[].
- Traverse the array arr[] an for each element, count the number of indices separating it from its correct position, i.e |(arr[i] – i + N) % N|.
- Store the counts for each array element in a new array new_arr[].
- Store the count of frequencies of each element in new_arr[] in the array freq[].
- Print the element ith maximum frequency as the required answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count the number of // clockwise array rotations required // to maximize count of array elements // present at indices same as their value void find_min_rot( int arr[], int n) { // Stores count of indices separating // elements from its correct position int new_arr[n + 1]; int maxi = 1, ans = 0; // Stores frequencies of counts of // indices separating int freq[n + 1]; for ( int i = 1; i <= n; i++) { freq[i] = 0; } // Count indices separating each // element from its correct position for ( int i = 1; i <= n; i++) { new_arr[i] = (arr[i] - i + n) % n; } // Update frequencies of counts obtained for ( int i = 1; i <= n; i++) { freq[new_arr[i]]++; } // Find the count with maximum frequency for ( int i = 1; i <= n; i++) { if (freq[i] > maxi) { maxi = freq[i]; ans = i; } } // Print the answer cout << ans << endl; } // Driver Code int main() { int N = 5; int arr[] = { -1, 3, 4, 1, 5, 2 }; // Find minimum number of // array rotations required find_min_rot(arr, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to count the number of // clockwise array rotations required // to maximize count of array elements // present at indices same as their value static void find_min_rot( int arr[], int n) { // Stores count of indices separating // elements from its correct position int [] new_arr = new int [n + 1 ]; int maxi = 1 , ans = 0 ; // Stores frequencies of counts of // indices separating int [] freq = new int [n + 1 ]; for ( int i = 1 ; i <= n; i++) { freq[i] = 0 ; } // Count indices separating each // element from its correct position for ( int i = 1 ; i <= n; i++) { new_arr[i] = (arr[i] - i + n) % n; } // Update frequencies of counts obtained for ( int i = 1 ; i <= n; i++) { freq[new_arr[i]]++; } // Find the count with maximum frequency for ( int i = 1 ; i <= n; i++) { if (freq[i] > maxi) { maxi = freq[i]; ans = i; } } // Print the answer System.out.print(ans); } // Driver Code public static void main(String[] args) { int N = 5 ; int [] arr = { - 1 , 3 , 4 , 1 , 5 , 2 }; // Find minimum number of // array rotations required find_min_rot(arr, N); } } // This code is contributed by sanjoy_62 |
Python3
# Python3 program for the above approach # Function to count the number of # clockwise array rotations required # to maximize count of array elements # present at indices same as their value def find_min_rot(arr, n): # Stores count of indices separating # elements from its correct position new_arr = [ 0 ] * (n + 1 ) maxi = 1 ans = 0 # Stores frequencies of counts of # indices separating freq = [ 0 ] * (n + 1 ) for i in range ( 1 , n + 1 ): freq[i] = 0 # Count indices separating each # element from its correct position for i in range ( 1 , n + 1 ): new_arr[i] = (arr[i] - i + n) % n # Update frequencies of counts obtained for i in range ( 1 , n + 1 ): freq[new_arr[i]] + = 1 # Find the count with maximum frequency for i in range ( 1 , n + 1 ): if (freq[i] > maxi): maxi = freq[i] ans = i # Print the answer print (ans) # Driver Code if __name__ = = '__main__' : N = 5 arr = [ - 1 , 3 , 4 , 1 , 5 , 2 ] # Find minimum number of # array rotations required find_min_rot(arr, N) # This code is contributed by jana_sayantan |
C#
// C# program for the above approach using System; class GFG { // Function to count the number of // clockwise array rotations required // to maximize count of array elements // present at indices same as their value static void find_min_rot( int []arr, int n) { // Stores count of indices separating // elements from its correct position int [] new_arr = new int [n + 1]; int maxi = 1, ans = 0; // Stores frequencies of counts of // indices separating int [] freq = new int [n + 1]; for ( int i = 1; i <= n; i++) { freq[i] = 0; } // Count indices separating each // element from its correct position for ( int i = 1; i <= n; i++) { new_arr[i] = (arr[i] - i + n) % n; } // Update frequencies of counts obtained for ( int i = 1; i <= n; i++) { freq[new_arr[i]]++; } // Find the count with maximum frequency for ( int i = 1; i <= n; i++) { if (freq[i] > maxi) { maxi = freq[i]; ans = i; } } // Print the answer Console.Write(ans); } // Driver Code public static void Main(String[] args) { int N = 5; int [] arr = { -1, 3, 4, 1, 5, 2 }; // Find minimum number of // array rotations required find_min_rot(arr, N); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation of the above approach // Function to count the number of // clockwise array rotations required // to maximize count of array elements // present at indices same as their value function find_min_rot(arr, n) { // Stores count of indices separating // elements from its correct position let new_arr = []; let maxi = 1, ans = 0; // Stores frequencies of counts of // indices separating let freq = []; for (let i = 1; i <= n; i++) { freq[i] = 0; } // Count indices separating each // element from its correct position for (let i = 1; i <= n; i++) { new_arr[i] = (arr[i] - i + n) % n; } // Update frequencies of counts obtained for (let i = 1; i <= n; i++) { freq[new_arr[i]]++; } // Find the count with maximum frequency for (let i = 1; i <= n; i++) { if (freq[i] > maxi) { maxi = freq[i]; ans = i; } } // Print the answer document.write(ans); } // Driver code let N = 5; let arr = [ -1, 3, 4, 1, 5, 2 ]; // Find minimum number of // array rotations required find_min_rot(arr, N); // This code is contributed by code_hunt. </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!