Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount Array elements that occur before any of its prefix value of...

Count Array elements that occur before any of its prefix value of another Array

Given two arrays A[] and B[] of size N each, the task is to find the number of elements in array B[] that occur before any element that was present before it in array A[].

Example:

Input: N = 5, A[] = {3, 5, 1, 2, 4}, B[] = {4, 3, 1, 5, 2}
Output: 2
Explanation: Array A represent that 3 comes first then followed by 5, 1, 2, 4.
In array B, 4 must comes after 1, 2, 3, 5 but 4 comes before them. 
The value 1 is also in invalid order. It comes before 5.

Input: N = 3, A[] = {1, 3, 2}, B[] = {2, 1, 3}
Output: 1

Approach: The problem can be solved based on the following idea:

Find the number of elements that are present after all the elements that were present in its prefix in array A[]. Then the remaining elements are the ones that do not follow the rule.

Follow the steps mentioned below to implement the idea:

  • Initialize i = 0 and j = 0 to iterate through array A[] and B[] respectively.
  • While i and j are both less than N:
    • Increment j till B[j] is the same as A[i] or j goes out of the bound of the array size.
    • If A[i] and B[j] are the same then B[j] is satisfying the conditions. So increment the count (say C) for this element.
    • After the above iteration, increment the value of i to point to the next elements in array A[].
  • When the loop ends, return the value of (N-C) as the required answer.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of elements
// that occur before any of the element
// present in its prefix in array A[]
int InvalidOrder(int a[], int b[], int n)
{
    int i = 0, j = 0, temp, validcount = 0;
 
    // Loop to count the elements
    // that are in valid order
    while (i < n && j < n) {
        temp = j;
        while (temp < n && a[i] != b[temp]) {
            temp++;
        }
        if (temp != n) {
 
            validcount++;
            j = temp + 1;
        }
        i++;
    }
 
    // Return the answer
    return (n - validcount);
}
 
// Driver code
int main()
{
    int A[] = { 3, 5, 1, 2, 4 };
    int B[] = { 4, 3, 1, 5, 2 };
    int N = sizeof(A) / sizeof(A[0]);
 
    // Function call
    cout << InvalidOrder(A, B, N);
 
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
 
class GFG {
 
  // Function to count the number of elements
  // that occur before any of the element
  // present in its prefix in array A[]
  static int InvalidOrder(int[] a, int[] b, int n)
  {
    int i = 0, j = 0, temp, validcount = 0;
 
    // Loop to count the elements
    // that are in valid order
    while (i < n && j < n) {
      temp = j;
      while (temp < n && a[i] != b[temp]) {
        temp++;
      }
      if (temp != n) {
        validcount++;
        j = temp + 1;
      }
      i++;
    }
 
    // Return the answer
    return (n - validcount);
  }
 
  public static void main(String[] args)
  {
    int[] A = { 3, 5, 1, 2, 4 };
    int[] B = { 4, 3, 1, 5, 2 };
    int N = A.length;
 
    // Function call
    System.out.print(InvalidOrder(A, B, N));
  }
}
 
// This code is contributed by lokeshmvs21.


Python3




# python3 code to implement the approach
 
# Function to count the number of elements
# that occur before any of the element
# present in its prefix in array A[]
def InvalidOrder(a, b, n):
 
    i, j, temp, validcount = 0, 0, 0, 0
 
    # Loop to count the elements
    # that are in valid order
    while (i < n and j < n):
        temp = j
        while (temp < n and a[i] != b[temp]):
            temp += 1
 
        if (temp != n):
 
            validcount += 1
            j = temp + 1
 
        i += 1
 
    # Return the answer
    return (n - validcount)
 
# Driver code
if __name__ == "__main__":
 
    A = [3, 5, 1, 2, 4]
    B = [4, 3, 1, 5, 2]
    N = len(A)
 
    # Function call
    print(InvalidOrder(A, B, N))
 
    # This code is contributed by rakeshsahni


C#




// C# implementation
using System;
 
public class GFG{
 
  static int InvalidOrder(int[] a, int[] b, int n)
  {
    int i = 0, j = 0, temp, validcount = 0;
 
    // Loop to count the elements
    // that are in valid order
    while (i < n && j < n) {
      temp = j;
      while (temp < n && a[i] != b[temp]) {
        temp++;
      }
      if (temp != n) {
 
        validcount++;
        j = temp + 1;
      }
      i++;
    }
 
    // Return the answer
    return (n - validcount);
  }
 
  static public void Main (){
    int[] A = { 3, 5, 1, 2, 4 };
    int[] B = { 4, 3, 1, 5, 2 };
    int N = A.Length;
 
    // Function call
    Console.WriteLine(InvalidOrder(A, B, N));
  }
}
 
// This code is contributed by ksam24000


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to count the number of elements
       // that occur before any of the element
       // present in its prefix in array A[]
       function InvalidOrder(a, b, n) {
           let i = 0, j = 0, temp, validcount = 0;
 
           // Loop to count the elements
           // that are in valid order
           while (i < n && j < n) {
               temp = j;
               while (temp < n && a[i] != b[temp]) {
                   temp++;
               }
               if (temp != n) {
 
                   validcount++;
                   j = temp + 1;
               }
               i++;
           }
 
           // Return the answer
           return (n - validcount);
       }
 
       // Driver code
       let A = [3, 5, 1, 2, 4];
       let B = [4, 3, 1, 5, 2];
       let N = A.length;
 
       // Function call
       document.write(InvalidOrder(A, B, N));
 
// This code is contributed by Potta Lokesh
 
   </script>


Output

2

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
08 Nov, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments