Given an array arr[], the task is to count the number of elements from the array which divide the sum of all other elements.
Examples:
Input: arr[] = {3, 10, 4, 6, 7}
Output: 3
3 divides (10 + 4 + 6 + 7) i.e. 27
10 divides (3 + 4 + 6 + 7) i.e. 20
6 divides (3 + 10 + 4 + 7) i.e. 24Input: arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Output: 2
Naive Approach: Run two-loop from 0 to N, calculate the sum of all elements except the current element and if this element divides that sum, then increment the count.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <iostream> using namespace std; // Function to return the count // of the required numbers int countNum( int N, int arr[]) { // To store the count of required numbers int count = 0; for ( int i = 0; i < N; i++) { // Initialize sum to 0 int sum = 0; for ( int j = 0; j < N; j++) { // If current element and the // chosen element are same if (i == j) continue ; // Add all other numbers of array else sum += arr[j]; } // If sum is divisible by the chosen element if (sum % arr[i] == 0) count++; } // Return the count return count; } // Driver code int main() { int arr[] = { 3, 10, 4, 6, 7 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countNum(n, arr); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the count // of the required numbers static int countNum( int N, int arr[]) { // To store the count of required numbers int count = 0 ; for ( int i = 0 ; i < N; i++) { // Initialize sum to 0 int sum = 0 ; for ( int j = 0 ; j < N; j++) { // If current element and the // chosen element are same if (i == j) continue ; // Add all other numbers of array else sum += arr[j]; } // If sum is divisible by the chosen element if (sum % arr[i] == 0 ) count++; } // Return the count return count; } // Driver code public static void main(String[] args) { int arr[] = { 3 , 10 , 4 , 6 , 7 }; int n = arr.length; System.out.println(countNum(n, arr)); } } // This code is contributed by Code_Mech |
Python3
# Python3 implementation of the approach # Function to return the count # of the required numbers def countNum(N, arr): # To store the count of # required numbers count = 0 for i in range (N): # Initialize sum to 0 Sum = 0 for j in range (N): # If current element and the # chosen element are same if (i = = j): continue # Add all other numbers of array else : Sum + = arr[j] # If Sum is divisible by the # chosen element if ( Sum % arr[i] = = 0 ): count + = 1 # Return the count return count # Driver code arr = [ 3 , 10 , 4 , 6 , 7 ] n = len (arr) print (countNum(n, arr)) # This code is contributed # by Mohit Kumar |
C#
// C# implementation of the approach using System; class GFG { // Function to return the count // of the required numbers static int countNum( int N, int []arr) { // To store the count of required numbers int count = 0; for ( int i = 0; i < N; i++) { // Initialize sum to 0 int sum = 0; for ( int j = 0; j < N; j++) { // If current element and the // chosen element are same if (i == j) continue ; // Add all other numbers of array else sum += arr[j]; } // If sum is divisible by the chosen element if (sum % arr[i] == 0) count++; } // Return the count return count; } // Driver code public static void Main() { int []arr = { 3, 10, 4, 6, 7 }; int n = arr.Length; Console.WriteLine(countNum(n, arr)); } } // This code is contributed by inder_verma.. |
PHP
<?php // Php implementation of the approach // Function to return the count // of the required numbers function countNum( $N , $arr ) { // To store the count of // required numbers $count = 0; for ( $i =0; $i < $N ; $i ++) { // Initialize sum to 0 $Sum = 0; for ( $j = 0; $j < $N ; $j ++) { // If current element and the // chosen element are same if ( $i == $j ) continue ; // Add all other numbers of array else $Sum += $arr [ $j ]; } // If Sum is divisible by the // chosen element if ( $Sum % $arr [ $i ] == 0) $count += 1; } // Return the count return $count ; } // Driver code $arr = array (3, 10, 4, 6, 7); $n = count ( $arr ); echo countNum( $n , $arr ); // This code is contributed // by Srathore ?> |
Javascript
<script> // Javascript implementation of the approach // Function to return the count // of the required numbers function countNum(N, arr) { // To store the count of required numbers let count = 0; for (let i = 0; i < N; i++) { // Initialize sum to 0 let sum = 0; for (let j = 0; j < N; j++) { // If current element and the // chosen element are same if (i == j) continue ; // Add all other numbers of array else sum += arr[j]; } // If sum is divisible by the chosen element if (sum % arr[i] == 0) count++; } // Return the count return count; } let arr = [ 3, 10, 4, 6, 7 ]; let n = arr.length; document.write(countNum(n, arr)); // This code is contributed by vaibhavrabadiya117 </script> |
3
Time Complexity: O(N2)
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Efficient Approach: Run a single loop from 0 to N, calculate the sum of all the elements. Now run another loop from 0 to N and if (sum – arr[i]) % arr[i] = 0 then increment the count.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <iostream> using namespace std; // Function to return the count // of the required numbers int countNum( int N, int arr[]) { // Initialize sum and count to 0 int sum = 0, count = 0; // Calculate sum of all // the array elements for ( int i = 0; i < N; i++) sum += arr[i]; for ( int i = 0; i < N; i++) // If current element satisfies the condition if ((sum - arr[i]) % arr[i] == 0) count++; // Return the count of required elements return count; } // Driver code int main() { int arr[] = { 3, 10, 4, 6, 7 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countNum(n, arr); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the count // of the required numbers static int countNum( int N, int arr[]) { // Initialize sum and count to 0 int sum = 0 , count = 0 ; // Calculate sum of all // the array elements for ( int i = 0 ; i < N; i++) { sum += arr[i]; } // If current element satisfies the condition for ( int i = 0 ; i < N; i++) { if ((sum - arr[i]) % arr[i] == 0 ) { count++; } } // Return the count of required elements return count; } // Driver code public static void main(String[] args) { int arr[] = { 3 , 10 , 4 , 6 , 7 }; int n = arr.length; System.out.println(countNum(n, arr)); } } // This code has been contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function to return the count # of the required numbers def countNum(N, arr): # Initialize Sum and count to 0 Sum , count = 0 , 0 # Calculate Sum of all the # array elements for i in range (N): Sum + = arr[i] for i in range (N): # If current element satisfies # the condition if (( Sum - arr[i]) % arr[i] = = 0 ): count + = 1 # Return the count of required # elements return count # Driver code arr = [ 3 , 10 , 4 , 6 , 7 ] n = len (arr) print (countNum(n, arr)) # This code is contributed # by Mohit Kumar |
C#
// C# implementation of the approach using System; class GFG { // Function to return the count // of the required numbers static int countNum( int N, int []arr) { // Initialize sum and count to 0 int sum = 0, count = 0; // Calculate sum of all // the array elements for ( int i = 0; i < N; i++) { sum += arr[i]; } // If current element satisfies the condition for ( int i = 0; i < N; i++) { if ((sum - arr[i]) % arr[i] == 0) { count++; } } // Return the count of required elements return count; } // Driver code public static void Main() { int []arr = {3, 10, 4, 6, 7}; int n = arr.Length; Console.WriteLine(countNum(n, arr)); } } /* This code contributed by PrinciRaj1992 */ |
PHP
<?php // PHP implementation of the approach // Function to return the count // of the required numbers function countNum( $N , $arr ) { // Initialize sum and count to 0 $sum = 0; $count = 0; // Calculate sum of all // the array elements for ( $i = 0; $i < $N ; $i ++) $sum += $arr [ $i ]; for ( $i = 0; $i < $N ; $i ++) // If current element satisfies // the condition if (( $sum - $arr [ $i ]) % $arr [ $i ] == 0) $count ++; // Return the count of required elements return $count ; } // Driver code $arr = array (3, 10, 4, 6, 7); $n = count ( $arr ); echo countNum( $n , $arr ); // This code contributed by Rajput-Ji ?> |
Javascript
<script> // Javascript implementation of the approach // Function to return the count // of the required numbers function countNum(N, arr) { // Initialize sum and count to 0 let sum = 0, count = 0; // Calculate sum of all // the array elements for (let i = 0; i < N; i++) { sum += arr[i]; } // If current element satisfies the condition for (let i = 0; i < N; i++) { if ((sum - arr[i]) % arr[i] == 0) { count++; } } // Return the count of required elements return count; } let arr = [3, 10, 4, 6, 7]; let n = arr.length; document.write(countNum(n, arr)); </script> |
3
Time Complexity: O(N)
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!