Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount Arithmetic Progressions having sum N and common difference equal to 1

Count Arithmetic Progressions having sum N and common difference equal to 1

Given an integer N, the task is to count all arithmetic progression with common difference equal to 1 and the sum of all its elements equal to N.

Examples:

Input: N = 12
Output: 3
Explanation: 
Following three APs satisfy the required conditions:

  • {3, 4, 5}
  • {−2, −1, 0, 1, 2, 3, 4, 5}
  • {−11, −10, −9, …, 10, 11, 12]}

Input: N = 963761198400
Output: 1919

 

Approach: The given problem can be solved using the following properties of AP:

  • The sum of an AP series having N terms with first term as A and common difference 1 is given by the formula S = (N / 2 )* ( 2 *A + N − 1).
  • Solving the above equation:

S = N / 2 [2 *A + N − 1].

Rearranging this and multiplying both sides by 2
=> 2 * S = N * (N + 2 * A − 1)

Rearranging further
=> A = ((2 * N / i ) − i + 1) / 2.

Now, iterate over all the factors of 2 * N, and check for each factor i, whether (2 * N/i) − i + 1 is even or not.

Follow the steps below to solve the problem:

  • Initialize a variable, say count, to store the number of AP series possible having given conditions.
  • Iterate through all the factors of 2 * N and for every ith factor, check if (2 * N / i) − i + 1 is even.
  • If found to be true, increment the count.
  • Print count – 1 as the required answer, as the sequence consisting only of N needs to be discarded.

Below is the implementation of the above approach:

C++14




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count all possible
// AP series with common difference
// 1 and sum of elements equal to N
void countAPs(long long int N)
{
    // Stores the count of AP series
    long long int count = 0;
 
    // Traverse through all factors of 2 * N
    for (long long int i = 1;
         i * i <= 2 * N; i++) {
 
        long long int res = 2 * N;
        if (res % i == 0) {
 
            // Check for the given conditions
            long long int op = res / i - i + 1;
 
            if (op % 2 == 0) {
 
                // Increment count
                count++;
            }
            if (i * i != res
                and (i - res / i + 1) % 2 == 0) {
                count++;
            }
        }
    }
 
    // Print count - 1
    cout << count - 1 << "\n";
}
 
// Driver Code
int main()
{
    // Given value of N
    long long int N = 963761198400;
 
    // Function call to count
    // required number of AP series
    countAPs(N);
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
class GFG {
 
  // Function to count all possible
  // AP series with common difference
  // 1 and sum of elements equal to N
  static void countAPs(long N)
  {
 
    // Stores the count of AP series
    long count = 0;
 
    // Traverse through all factors of 2 * N
    for (long i = 1; i * i <= 2 * N; i++) {
 
      long res = 2 * N;
      if (res % i == 0) {
 
        // Check for the given conditions
        long op = res / i - i + 1;
 
        if (op % 2 == 0) {
 
          // Increment count
          count++;
        }
        if (i * i != res
            && (i - res / i + 1) % 2 == 0) {
          count++;
        }
      }
    }
 
    // Print count - 1
    System.out.println(count - 1);
  }
 
  // Driver code
  public static void main(String[] args)
  {
 
    // Given value of N
    long N = 963761198400L;
 
    // Function call to count
    // required number of AP series
    countAPs(N);
  }
}
 
// This code is contributed by Kingash.


Python3




# Python3 program to implement
# the above approach
 
#  Function to count all possible
#  AP series with common difference
#  1 and sum of elements equal to N
def countAPs(N) :
     
    #  Stores the count of AP series
    count = 0
 
    #  Traverse through all factors of 2 * N
    i = 1
    while(i * i <= 2 * N) :
 
        res = 2 * N
        if (res % i == 0) :
 
            #  Check for the given conditions
            op = res / i - i + 1
 
            if (op % 2 == 0) :
 
                #  Increment count
                count += 1
            if (i * i != res
                and (i - res / i + 1) % 2 == 0) :
                count += 1     
        i += 1
   
    #  Print count - 1
    print(count - 1)
 
 
#  Driver Code
 
#  Given value of N
N = 963761198400
 
#  Function call to count
#  required number of AP series
countAPs(N)
 
# This code is contributed by sanjoy_62.


C#




// C# program for above approach
using System;
public class GFG
{
 
  // Function to count all possible
  // AP series with common difference
  // 1 and sum of elements equal to N
  static void countAPs(long N)
  {
 
    // Stores the count of AP series
    long count = 0;
 
    // Traverse through all factors of 2 * N
    for (long i = 1; i * i <= 2 * N; i++) {
 
      long res = 2 * N;
      if (res % i == 0) {
 
        // Check for the given conditions
        long op = res / i - i + 1;
 
        if (op % 2 == 0) {
 
          // Increment count
          count++;
        }
        if (i * i != res
            && (i - res / i + 1) % 2 == 0) {
          count++;
        }
      }
    }
 
    // Print count - 1
    Console.WriteLine(count - 1);
  }
 
  // Driver code
  public static void Main(String[] args)
  {
 
    // Given value of N
    long N = 963761198400L;
 
    // Function call to count
    // required number of AP series
    countAPs(N);
  }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
 
// Javascript program for the above approach
 
  // Function to count all possible
  // AP series with common difference
  // 1 and sum of elements equal to N
  function countAPs(N)
  {
  
    // Stores the count of AP series
    let count = 0;
  
    // Traverse through all factors of 2 * N
    for (let i = 1; i * i <= 2 * N; i++) {
  
      let res = 2 * N;
      if (res % i == 0) {
  
        // Check for the given conditions
        let op = res / i - i + 1;
  
        if (op % 2 == 0) {
  
          // Increment count
          count++;
        }
        if (i * i != res
            && (i - res / i + 1) % 2 == 0) {
          count++;
        }
      }
    }
  
    // Print count - 1
    document.write(count - 1);
  }
 
// Driver code
     
    // Given value of N
    let N = 963761198400;
  
    // Function call to count
    // required number of AP series
    countAPs(N);
     
</script>


 
 

Output: 

1919

 

Time Complexity: O(√N)
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments