Friday, November 21, 2025
HomeData Modelling & AICount all the numbers less than 10^6 whose minimum prime factor is...

Count all the numbers less than 10^6 whose minimum prime factor is N

Given a number N which is prime. The task is to find all the numbers less than or equal to 10^6 whose minimum prime factor is N.
Examples: 
 

Input: N = 2
Output: 500000

Input: N = 3
Output: 166667

 

Approach: Use sieve of Eratosthenes to find the solution to the problem. Store all the prime numbers less than 10^6 . Form another sieve that will store the count of all the numbers whose minimum prime factor is the index of the sieve. Then display the count of the prime number N (i.e. sieve_count[n]+1), where n is the prime number.
Below is the implementation of above approach: 
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000000
 
// the sieve of prime number and
// count of minimum prime factor
int sieve_Prime[MAX + 4] = { 0 },
                      sieve_count[MAX + 4] = { 0 };
 
// form the prime sieve
void form_sieve()
{
    // 1 is not a prime number
    sieve_Prime[1] = 1;
 
    // form the sieve
    for (int i = 2; i <= MAX; i++) {
 
        // if i is prime
        if (sieve_Prime[i] == 0) {
            for (int j = i * 2; j <= MAX; j += i) {
 
                // if i is the least prime factor
                if (sieve_Prime[j] == 0) {
 
                    // mark the number j as non prime
                    sieve_Prime[j] = 1;
 
                    // count the numbers whose least prime factor is i
                    sieve_count[i]++;
                }
            }
        }
    }
}
 
// Driver code
int main()
{
    // form the sieve
    form_sieve();
 
    int n = 2;
 
    // display
    cout << "Count = " << (sieve_count[n] + 1) << endl;
 
    n = 3;
 
    // display
    cout << "Count = " << (sieve_count[n] + 1) << endl;
 
    return 0;
}


Java




// Java implementation of above approach
import java.io.*;
 
class GFG {
     
static int MAX = 1000000;
 
// the sieve of prime number and
// count of minimum prime factor
static int sieve_Prime[] = new int[MAX + 4];
static int sieve_count[] =  new int[MAX + 4];
 
// form the prime sieve
static void form_sieve()
{
    // 1 is not a prime number
    sieve_Prime[1] = 1;
 
    // form the sieve
    for (int i = 2; i <= MAX; i++) {
 
        // if i is prime
        if (sieve_Prime[i] == 0) {
            for (int j = i * 2; j <= MAX; j += i) {
 
                // if i is the least prime factor
                if (sieve_Prime[j] == 0) {
 
                    // mark the number j as non prime
                    sieve_Prime[j] = 1;
 
                    // count the numbers whose least prime factor is i
                    sieve_count[i]++;
                }
            }
        }
    }
}
 
// Driver code
 
    public static void main (String[] args) {
        // form the sieve
    form_sieve();
 
    int n = 2;
 
    // display
    System.out.println( "Count = " + (sieve_count[n] + 1));
 
    n = 3;
 
    // display
    System.out.println ("Count = "  +(sieve_count[n] + 1));
    }
}
// This code was contributed
// by inder_mca


Python3




# Python3 implementation of
# above approach
 
MAX = 1000000
 
# the sieve of prime number and
# count of minimum prime factor
sieve_Prime = [0 for i in range(MAX + 4)]
sieve_count = [0 for i in range(MAX + 4)]
 
# form the prime sieve
def form_sieve():
     
    # 1 is not a prime number
    sieve_Prime[1] = 1
 
    # form the sieve
    for i in range(2, MAX + 1):
 
        # if i is prime
        if sieve_Prime[i] == 0:
            for j in range(i * 2, MAX + 1, i):
 
                # if i is the least prime factor
                if sieve_Prime[j] == 0:
 
                    # mark the number j
                    # as non prime
                    sieve_Prime[j] = 1
 
                    # count the numbers whose
                    # least prime factor is i
                    sieve_count[i] += 1
 
# Driver code
 
# form the sieve
form_sieve()
 
n = 2
 
# display
print("Count =", sieve_count[n] + 1)
 
n = 3
 
# display
print("Count =", sieve_count[n] + 1)
 
# This code was contributed
# by VishalBachchas


C#




// C# implementation of above approach
using System;
 
class GFG {
     
static int MAX = 1000000;
 
// the sieve of prime number and
// count of minimum prime factor
static int []sieve_Prime = new int[MAX + 4];
static int []sieve_count = new int[MAX + 4];
 
// form the prime sieve
static void form_sieve()
{
    // 1 is not a prime number
    sieve_Prime[1] = 1;
 
    // form the sieve
    for (int i = 2; i <= MAX; i++) {
 
        // if i is prime
        if (sieve_Prime[i] == 0) {
            for (int j = i * 2; j <= MAX; j += i) {
 
                // if i is the least prime factor
                if (sieve_Prime[j] == 0) {
 
                    // mark the number j as non prime
                    sieve_Prime[j] = 1;
 
                    // count the numbers whose least prime factor is i
                    sieve_count[i]++;
                }
            }
        }
    }
}
 
// Driver code
 
    public static void Main () {
        // form the sieve
    form_sieve();
 
    int n = 2;
 
    // display
    Console.WriteLine( "Count = " + (sieve_count[n] + 1));
 
    n = 3;
 
    // display
    Console.WriteLine ("Count = " +(sieve_count[n] + 1));
    }
}
// This code was contributed
// by shs


PHP




<?php
// PHP implementation of above approach
$MAX = 1000000;
 
// the sieve of prime number and
// count of minimum prime factor
$sieve_Prime = array_fill(0, $MAX + 4, NULL);
$sieve_count = array_fill(0, $MAX + 4, NULL);
 
// form the prime sieve
function form_sieve()
{
    global $sieve_Prime, $sieve_count, $MAX;
     
    // 1 is not a prime number
    $sieve_Prime[1] = 1;
 
    // form the sieve
    for ($i = 2; $i <= $MAX; $i++)
    {
 
        // if i is prime
        if ($sieve_Prime[$i] == 0)
        {
            for ($j = $i * 2; $j <= $MAX; $j += $i)
            {
 
                // if i is the least prime factor
                if ($sieve_Prime[$j] == 0)
                {
 
                    // mark the number j as non prime
                    $sieve_Prime[$j] = 1;
 
                    // count the numbers whose least
                    // prime factor is i
                    $sieve_count[$i]++;
                }
            }
        }
    }
}
 
// Driver code
 
// form the sieve
form_sieve();
 
$n = 2;
 
// display
echo "Count = " . ($sieve_count[$n] + 1) . "\n";
 
$n = 3;
 
// display
echo "Count = " . ($sieve_count[$n] + 1) . "\n";
 
// This code is contributed by ita_c
?>


Javascript




<script>
 
// Javascript implementation of above approach
    
var MAX = 1000000;
 
// the sieve of prime number and
// count of minimum prime factor
var sieve_Prime = Array.from({length: MAX + 4},
(_, i) => 0);
var sieve_count =  Array.from({length: MAX + 4},
(_, i) => 0);
 
// form the prime sieve
function form_sieve()
{
    // 1 is not a prime number
    sieve_Prime[1] = 1;
 
    // form the sieve
    for (i = 2; i <= MAX; i++) {
 
        // if i is prime
        if (sieve_Prime[i] == 0) {
            for (j = i * 2; j <= MAX; j += i) {
 
                // if i is the least prime factor
                if (sieve_Prime[j] == 0) {
 
                    // mark the number j as non prime
                    sieve_Prime[j] = 1;
 
                    // count the numbers whose least
                    // prime factor is i
                    sieve_count[i]++;
                }
            }
        }
    }
}
 
// Driver code
 
// form the sieve
form_sieve();
 
var n = 2;
 
// display
document.write( "Count = " + (sieve_count[n] + 1));
 
n = 3;
 
// display
document.write("<br>Count = "  +(sieve_count[n] + 1));
    
 
 
// This code contributed by shikhasingrajput
 
</script>


Output

Count = 500000
Count = 166667

Time Complexity: O(N*log(log(N))), where N=106.

Auxiliary Space: O(106)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32405 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6781 POSTS0 COMMENTS
Nicole Veronica
11928 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11995 POSTS0 COMMENTS
Shaida Kate Naidoo
6907 POSTS0 COMMENTS
Ted Musemwa
7164 POSTS0 COMMENTS
Thapelo Manthata
6862 POSTS0 COMMENTS
Umr Jansen
6847 POSTS0 COMMENTS