Given a positive array, find the number of subsequences having product smaller than or equal to K.
Examples:
Input : [1, 2, 3, 4]
k = 10
Output :11
Explanation: The subsequences are {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}Input : [4, 8, 7, 2]
k = 50
Output : 9
This problem can be solved using dynamic programming where dp[i][j] = number of subsequences having product less than i using first j terms of the array. Which can be obtained by : number of subsequences using first j-1 terms + number of subsequences that can be formed using j-th term.
Below is the implementation of the above approach:
C++
// CPP program to find number of subarrays having // product less than k. #include <bits/stdc++.h> using namespace std; // Function to count numbers of such subsequences // having product less than k. int productSubSeqCount(vector< int > &arr, int k) { int n = arr.size(); int dp[k + 1][n + 1]; memset (dp, 0, sizeof (dp)); for ( int i = 1; i <= k; i++) { for ( int j = 1; j <= n; j++) { // number of subsequence using j-1 terms dp[i][j] = dp[i][j - 1]; // if arr[j-1] > i it will surely make product greater // thus it won't contribute then if (arr[j - 1] <= i) // number of subsequence using 1 to j-1 terms // and j-th term dp[i][j] += dp[i/arr[j-1]][j-1] + 1; } } return dp[k][n]; } // Driver code int main() { vector< int > A; A.push_back(1); A.push_back(2); A.push_back(3); A.push_back(4); int k = 10; cout << productSubSeqCount(A, k) << endl; } |
Java
// Java program to find number of subarrays // having product less than k. import java.util.*; class CountSubsequences { // Function to count numbers of such // subsequences having product less than k. public static int productSubSeqCount(ArrayList<Integer> arr, int k) { int n = arr.size(); int dp[][]= new int [k + 1 ][n + 1 ]; for ( int i = 1 ; i <= k; i++) { for ( int j = 1 ; j <= n; j++) { // number of subsequence using j-1 terms dp[i][j] = dp[i][j - 1 ]; // if arr[j-1] > i it will surely make // product greater thus it won't contribute // then if (arr.get(j- 1 ) <= i && arr.get(j- 1 ) > 0 ) // number of subsequence using 1 to j-1 // terms and j-th term dp[i][j] += dp[i/arr.get(j - 1 )][j - 1 ] + 1 ; } } return dp[k][n]; } // Driver code public static void main(String args[]) { ArrayList<Integer> A = new ArrayList<Integer>(); A.add( 1 ); A.add( 2 ); A.add( 3 ); A.add( 4 ); int k = 10 ; System.out.println(productSubSeqCount(A, k)); } } // This Code is contributed by Danish Kaleem |
Python3
# Python3 program to find # number of subarrays having # product less than k. def productSubSeqCount(arr, k): n = len (arr) dp = [[ 0 for i in range (n + 1 )] for j in range (k + 1 )] for i in range ( 1 , k + 1 ): for j in range ( 1 , n + 1 ): # number of subsequence # using j-1 terms dp[i][j] = dp[i][j - 1 ] # if arr[j-1] > i it will # surely make product greater # thus it won't contribute then if arr[j - 1 ] < = i and arr[j - 1 ] > 0 : # number of subsequence # using 1 to j-1 terms # and j-th term dp[i][j] + = dp[i / / arr[j - 1 ]][j - 1 ] + 1 return dp[k][n] # Driver code A = [ 1 , 2 , 3 , 4 ] k = 10 print (productSubSeqCount(A, k)) # This code is contributed # by pk_tautolo |
C#
// C# program to find number of subarrays // having product less than k. using System ; using System.Collections ; class CountSubsequences { // Function to count numbers of such // subsequences having product less than k. public static int productSubSeqCount(ArrayList arr, int k) { int n = arr.Count ; int [,]dp = new int [k + 1,n + 1]; for ( int i = 1; i <= k; i++) { for ( int j = 1; j <= n; j++) { // number of subsequence using j-1 terms dp[i,j] = dp[i,j - 1]; // if arr[j-1] > i it will surely make // product greater thus it won't contribute // then if (Convert.ToInt32(arr[j-1]) <= i && Convert.ToInt32(arr[j-1]) > 0) // number of subsequence using 1 to j-1 // terms and j-th term dp[i,j] += dp[ i/Convert.ToInt32(arr[j - 1]),j - 1] + 1; } } return dp[k,n]; } // Driver code public static void Main() { ArrayList A = new ArrayList(); A.Add(1); A.Add(2); A.Add(3); A.Add(4); int k = 10; Console.WriteLine(productSubSeqCount(A, k)); } } // This Code is contributed Ryuga |
Javascript
<script> // Javascript program to find number of subarrays // having product less than k. // Function to count numbers of such // subsequences having product less than k. function productSubSeqCount(arr, k) { let n = arr.length; let dp = new Array(k + 1); for (let i = 0; i < k + 1; i++) { dp[i] = new Array(n + 1); for (let j = 0; j < n + 1; j++) { dp[i][j] = 0; } } for (let i = 1; i <= k; i++) { for (let j = 1; j <= n; j++) { // number of subsequence using j-1 terms dp[i][j] = dp[i][j - 1]; // if arr[j-1] > i it will surely make // product greater thus it won't contribute // then if (arr[j-1] <= i && arr[j-1] > 0) // number of subsequence using 1 to j-1 // terms and j-th term dp[i][j] += dp[parseInt(i/arr[j - 1], 10)][j - 1] + 1; } } return dp[k][n]; } let A = [1, 2, 3, 4]; let k = 10; document.write(productSubSeqCount(A, k)); // This code is contributed by suresh07. </script> |
11
Time Complexity: O(K*N)
Auxiliary Space: O(K*N)
This article is contributed by Raghav Sharma. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!