Monday, January 27, 2025
Google search engine
HomeLanguagesDynamic ProgrammingCount all subsequences having product less than K

Count all subsequences having product less than K

Given a positive array, find the number of subsequences having product smaller than or equal to K.
Examples: 

Input : [1, 2, 3, 4] 
        k = 10
Output :11 
Explanation: The subsequences are {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}

Input  : [4, 8, 7, 2] 
         k = 50
Output : 9

This problem can be solved using dynamic programming where dp[i][j] = number of subsequences having product less than i using first j terms of the array. Which can be obtained by : number of subsequences using first j-1 terms + number of subsequences that can be formed using j-th term. 

Below is the implementation of the above approach:

C++




// CPP program to find number of subarrays having
// product less than k.
#include <bits/stdc++.h>
using namespace std;
 
// Function to count numbers of such subsequences
// having product less than k.
int productSubSeqCount(vector<int> &arr, int k)
{
    int n = arr.size();
    int dp[k + 1][n + 1];
    memset(dp, 0, sizeof(dp));
 
    for (int i = 1; i <= k; i++) {
        for (int j = 1; j <= n; j++) {
    
            // number of subsequence using j-1 terms
            dp[i][j] = dp[i][j - 1];
   
            // if arr[j-1] > i it will surely make product greater
            // thus it won't contribute then
            if (arr[j - 1] <= i)
 
                // number of subsequence using 1 to j-1 terms
                // and j-th term
                dp[i][j] += dp[i/arr[j-1]][j-1] + 1;
        }
    }
    return dp[k][n];
}
 
// Driver code
int main()
{
    vector<int> A;
    A.push_back(1);
    A.push_back(2);
    A.push_back(3);
    A.push_back(4);
    int k = 10;
    cout << productSubSeqCount(A, k) << endl;
}


Java




// Java program to find number of subarrays
// having product less than k.
import java.util.*;
class CountSubsequences
{
    // Function to count numbers of such
    // subsequences having product less than k.
    public static int productSubSeqCount(ArrayList<Integer> arr,
                                                 int k)
    {
        int n = arr.size();
        int dp[][]=new int[k + 1][n + 1];
         
        for (int i = 1; i <= k; i++) {
            for (int j = 1; j <= n; j++) {
         
                // number of subsequence using j-1 terms
                dp[i][j] = dp[i][j - 1];
         
                // if arr[j-1] > i it will surely make
                // product greater thus it won't contribute
                // then
                if (arr.get(j-1) <= i && arr.get(j-1) > 0)
     
                    // number of subsequence using 1 to j-1
                    // terms and j-th term
                    dp[i][j] += dp[i/arr.get(j - 1)][j - 1] + 1;
            }
        }
        return dp[k][n];
    }
     
    // Driver code
    public static void main(String args[])
    {
        ArrayList<Integer> A = new ArrayList<Integer>();
        A.add(1);
        A.add(2);
        A.add(3);
        A.add(4);
        int k = 10;
        System.out.println(productSubSeqCount(A, k));
    }
}
 
// This Code is contributed by Danish Kaleem


Python3




# Python3 program to find
# number of subarrays having
# product less than k.
def productSubSeqCount(arr, k):
    n = len(arr)
    dp = [[0 for i in range(n + 1)]
             for j in range(k + 1)]
    for i in range(1, k + 1):
        for j in range(1, n + 1):
             
            # number of subsequence
            # using j-1 terms
            dp[i][j] = dp[i][j - 1]
             
            # if arr[j-1] > i it will
            # surely make product greater
            # thus it won't contribute then
            if arr[j - 1] <= i and arr[j - 1] > 0:
                 
                # number of subsequence
                # using 1 to j-1 terms
                # and j-th term
                dp[i][j] += dp[i // arr[j - 1]][j - 1] + 1
    return dp[k][n]
 
# Driver code
A = [1,2,3,4]
k = 10
print(productSubSeqCount(A, k))
 
# This code is contributed
# by pk_tautolo


C#




// C# program to find number of subarrays
// having product less than k.
using System ;
using System.Collections ;
 
class CountSubsequences
{
    // Function to count numbers of such
    // subsequences having product less than k.
    public static int productSubSeqCount(ArrayList arr, int k)
    {
        int n = arr.Count ;
        int [,]dp = new int[k + 1,n + 1];
         
        for (int i = 1; i <= k; i++) {
            for (int j = 1; j <= n; j++) {
         
                // number of subsequence using j-1 terms
                dp[i,j] = dp[i,j - 1];
         
                // if arr[j-1] > i it will surely make
                // product greater thus it won't contribute
                // then
                if (Convert.ToInt32(arr[j-1]) <= i && Convert.ToInt32(arr[j-1]) > 0)
     
                    // number of subsequence using 1 to j-1
                    // terms and j-th term
                    dp[i,j] += dp[ i/Convert.ToInt32(arr[j - 1]),j - 1] + 1;
            }
        }
        return dp[k,n];
    }
     
    // Driver code
    public static void Main()
    {
        ArrayList A = new ArrayList();
        A.Add(1);
        A.Add(2);
        A.Add(3);
        A.Add(4);
        int k = 10;
        Console.WriteLine(productSubSeqCount(A, k));
    }
}
 
// This Code is contributed Ryuga


Javascript




<script>
    // Javascript program to find number of subarrays
    // having product less than k.
     
    // Function to count numbers of such
    // subsequences having product less than k.
    function productSubSeqCount(arr, k)
    {
        let n = arr.length;
        let dp = new Array(k + 1);
        for (let i = 0; i < k + 1; i++)
        {
            dp[i] = new Array(n + 1);
            for (let j = 0; j < n + 1; j++)
            {
                dp[i][j] = 0;
            }
        }
           
        for (let i = 1; i <= k; i++) {
            for (let j = 1; j <= n; j++) {
           
                // number of subsequence using j-1 terms
                dp[i][j] = dp[i][j - 1];
           
                // if arr[j-1] > i it will surely make
                // product greater thus it won't contribute
                // then
                if (arr[j-1] <= i && arr[j-1] > 0)
       
                    // number of subsequence using 1 to j-1
                    // terms and j-th term
                    dp[i][j] += dp[parseInt(i/arr[j - 1], 10)][j - 1] + 1;
            }
        }
        return dp[k][n];
    }
     
    let A = [1, 2, 3, 4];
    let k = 10;
    document.write(productSubSeqCount(A, k));
     
    // This code is contributed by suresh07.
</script>


Output

11

Time Complexity: O(K*N)
Auxiliary Space: O(K*N)
This article is contributed by Raghav Sharma. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments