Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount all possible pairs in given Array with product K

Count all possible pairs in given Array with product K

Given an integer array arr[] of size N and a positive integer K, the task is to count all the pairs in the array with a product equal to K.

Examples:

Input: arr[] = {1, 2, 16, 4, 4, 4, 8 }, K=16
Output: 5
Explanation: Possible pairs are (1, 16), (2, 8), (4, 4), (4, 4), (4, 4)

Input: arr[] = {1, 10, 20, 10, 4, 5, 5, 2 }, K=20
Output: 5
Explanation: Possible pairs are (1, 20), (2, 10), (2, 10), (4, 5), (4, 5)

 

Naive Approach: 

The naive approach for the problem is to run two nested loops to generate each possible pair and then for each pair generated check their product value. If their product comes out to be same as K then increment the count.

Algorithm:

  1.    Initialize a variable count as 0.
  2.    Traverse the array from index i=0 to i=N-1.
  3.    For each i, traverse the array from index j=i+1 to j=N-1.
  4.    For each pair (i,j), check if their product is equal to K.
  5.    If their product is equal to K, increment the count.
  6.    After completing the loops, return the count.

Below is the implementation of the approach:

C++




// C++ code for the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count pairs with product equal to K
int countPairsWithProductK(int arr[], int n, int k) {
    int count = 0;
 
    // Traverse through all possible pairs of the array
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            // Check if the product of the current pair is equal to K
            if (arr[i] * arr[j] == k) {
                count++;
            }
        }
    }
 
    // Return the count of pairs with product equal to K
    return count;
}
 
// Driver's code
int main() {
    int arr[] = { 1, 2, 16, 4, 4, 4, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 16;
 
    // Function Call
    int result = countPairsWithProductK(arr, n, k);
 
    // Print the result
    cout << result << endl;
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
    // Function to count pairs with product equal to K
    static int countPairsWithProductK(int[] arr, int k) {
        int count = 0;
        int n = arr.length;
 
        // Traverse through all possible pairs of the array
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                // Check if the product of the current pair is equal to K
                if (arr[i] * arr[j] == k) {
                    count++;
                }
            }
        }
 
        // Return the count of pairs with product equal to K
        return count;
    }
 
    // Driver's code
    public static void main(String[] args) {
        int[] arr = { 1, 2, 16, 4, 4, 4, 8 };
        int k = 16;
 
        // Function Call
        int result = countPairsWithProductK(arr, k);
 
        // Print the result
        System.out.println(result);
    }
}


Python3




# Function to count pairs with product equal to K
def countPairsWithProductK(arr, k):
    count = 0
    n = len(arr)
 
    # Traverse through all possible pairs of the array
    for i in range(n):
        for j in range(i + 1, n):
            # Check if the product of the current pair is equal to K
            if arr[i] * arr[j] == k:
                count += 1
 
    # Return the count of pairs with product equal to K
    return count
 
# Driver's code
arr = [1, 2, 16, 4, 4, 4, 8]
k = 16
 
# Function Call
result = countPairsWithProductK(arr, k)
 
# Print the result
print(result)


C#




using System;
 
class CountPairsWithProductK {
    // Function to count pairs with product equal to K
    static int CountPairs(int[] arr, int n, int k)
    {
        int count = 0;
 
        // Traverse through all possible pairs of the array
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                // Check if the product of the current pair
                // is equal to K
                if (arr[i] * arr[j] == k) {
                    count++;
                }
            }
        }
 
        // Return the count of pairs with product equal to K
        return count;
    }
 
    // Driver program to test CountPairs
    static void Main()
    {
        int[] arr = { 1, 2, 16, 4, 4, 4, 8 };
        int n = arr.Length;
        int k = 16;
 
        // Function Call
        int result = CountPairs(arr, n, k);
 
        // Print the result
        Console.WriteLine(result);
    }
}


Output

5



Time Complexity: O(N*N) because two nested loops are executing. Here, N is size of input array.

Space Complexity: O(1) as no extra space has been used.

Approach: The idea is to use hashing to store the elements and check if K/arr[i] exists in the array or not using the map and increase the count accordingly. 

Follow the steps below to solve the problem:

  • Initialize the variable count as 0 to store the answer.
  • Initialize the unordered_map<int, int> mp[].
  • Iterate over the range [0, N) using the variable i and store the frequencies of all elements of the array arr[] in the map mp[].
  • Iterate over the range [0, N) using the variable i and perform the following tasks:
    • Initialize the variable index as K/arr[i].
    • If K is not a power of 2 and index is present in map mp[] then increase the value of count by mp[arr[i]]*mp[index] and erase both of them from the map mp[].
    • If K is a power of 2 and index is present in map mp[] then increase the value of count by mp[index]*(mp[index]-1)/2 and erase it from the map mp[].
  • After performing the above steps, print the value of count as the answer.

Below is the implementation of the above approach.

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count
// the total number of pairs
int countPairsWithProductK(
    int arr[], int n, int k)
 
{
 
    int count = 0;
 
    // Initialize hashmap.
    unordered_map<int, int> mp;
 
    // Insert array elements to hashmap
    for (int i = 0; i < n; i++) {
 
        mp[arr[i]]++;
    }
 
    for (int i = 0; i < n; i++) {
 
        double index = 1.0 * k / arr[i];
 
        // If k is not power of two
        if (index >= 0
            && ((index - (int)(index)) == 0)
            && mp.find(k / arr[i]) != mp.end()
            && (index != arr[i])) {
 
            count += mp[arr[i]] * mp[index];
 
            // After counting erase the element
            mp.erase(arr[i]);
 
            mp.erase(index);
        }
 
        // If k is power of 2
        if (index >= 0
            && ((index - (int)(index)) == 0)
            && mp.find(k / arr[i]) != mp.end()
            && (index == arr[i])) {
 
            // Pair count
            count += (mp[arr[i]]
                      * (mp[arr[i]] - 1))
                     / 2;
 
            // After counting erase the element;
            mp.erase(arr[i]);
        }
    }
 
    return count;
}
 
// Driver Code
int main()
 
{
 
    int arr[] = { 1, 2, 16, 4, 4, 4, 8 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    int K = 16;
 
    cout << countPairsWithProductK(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
  // Function to count
  // the total number of pairs
  static int countPairsWithProductK(
    int arr[], int n, int k)
 
  {
 
    int count = 0;
 
    // Initialize hashmap.
    HashMap<Integer,Integer> mp = new HashMap<Integer,Integer>();
 
    // Insert array elements to hashmap
    for (int i = 0; i < n; i++) {
 
      if(mp.containsKey(arr[i])){
        mp.put(arr[i], mp.get(arr[i])+1);
      }else{
        mp.put(arr[i], 1);
      }
    }
 
    for (int i = 0; i < n; i++) {
 
      int index = (int) (1.0 * k / arr[i]);
 
      // If k is not power of two
      if (index >= 0
          && ((index - (int)(index)) == 0)
          && mp.containsKey(k / arr[i])
          && (index != arr[i])) {
 
        count += mp.get(arr[i]) * mp.get(index);
 
        // After counting erase the element
        mp.remove(arr[i]);
 
        mp.remove(index);
      }
 
      // If k is power of 2
      if (index >= 0
          && ((index - (int)(index)) == 0)
          && mp.containsKey(k / arr[i])
          && (index == arr[i])) {
 
        // Pair count
        count += (mp.get(arr[i])
                  * (mp.get(arr[i]) - 1))
          / 2;
 
        // After counting erase the element;
        mp.remove(arr[i]);
      }
    }
 
    return count;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
 
    int arr[] = { 1, 2, 16, 4, 4, 4, 8 };
    int N = arr.length;
    int K = 16;
    System.out.print(countPairsWithProductK(arr, N, K));
 
  }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python 3 program for the above approach
from collections import defaultdict
 
# Function to count
# the total number of pairs
def countPairsWithProductK(arr, n, k):
 
    count = 0
 
    # Initialize hashmap.
    mp = defaultdict(int)
 
    # Insert array elements to hashmap
    for i in range(n):
 
        mp[arr[i]] += 1
 
    for i in range(n):
 
        index = 1.0 * k / arr[i]
 
        # If k is not power of two
        if (index >= 0
            and ((index - (int)(index)) == 0)
            and (k / arr[i]) in mp
                and (index != arr[i])):
 
            count += mp[arr[i]] * mp[index]
 
            # After counting erase the element
            del mp[arr[i]]
 
            del mp[index]
 
        # If k is power of 2
        if (index >= 0
            and ((index - (int)(index)) == 0)
            and (k / arr[i]) in mp
                and (index == arr[i])):
 
            # Pair count
            count += ((mp[arr[i]]
                       * (mp[arr[i]] - 1)) / 2)
 
            # After counting erase the element;
            del mp[arr[i]]
 
    return count
 
# Driver Code
if __name__ == "__main__":
 
    arr = [1, 2, 16, 4, 4, 4, 8]
 
    N = len(arr)
 
    K = 16
 
    print(int(countPairsWithProductK(arr, N, K)))
 
    # This code is contributed by ukasp.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG{
 
  // Function to count
  // the total number of pairs
  static int countPairsWithProductK(
    int []arr, int n, int k)
 
  {
 
    int count = 0;
 
    // Initialize hashmap.
    Dictionary<int,int> mp = new Dictionary<int,int>();
 
    // Insert array elements to hashmap
    for (int i = 0; i < n; i++) {
 
      if(mp.ContainsKey(arr[i])){
        mp[arr[i]] = mp[arr[i]]+1;
      }else{
        mp.Add(arr[i], 1);
      }
    }
 
    for (int i = 0; i < n; i++) {
 
      int index = (int) (1.0 * k / arr[i]);
 
      // If k is not power of two
      if (index >= 0
          && ((index - (int)(index)) == 0)
          && mp.ContainsKey(k / arr[i])
          && (index != arr[i])) {
 
        count += mp[arr[i]] * mp[index];
 
        // After counting erase the element
        mp.Remove(arr[i]);
 
        mp.Remove(index);
      }
 
      // If k is power of 2
      if (index >= 0
          && ((index - (int)(index)) == 0)
          && mp.ContainsKey(k / arr[i])
          && (index == arr[i])) {
 
        // Pair count
        count += (mp[arr[i]]
                  * (mp[arr[i]] - 1))
          / 2;
 
        // After counting erase the element;
        mp.Remove(arr[i]);
      }
    }
 
    return count;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
 
    int []arr = { 1, 2, 16, 4, 4, 4, 8 };
    int N = arr.Length;
    int K = 16;
    Console.Write(countPairsWithProductK(arr, N, K));
 
  }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
      // JavaScript code for the above approach
      // Function to count
      // the total number of pairs
      function countPairsWithProductK(
          arr, n, k) {
 
          let count = 0;
 
          // Initialize hashmap.
          let mp = new Map();
 
          // Insert array elements to hashmap
          for (let i = 0; i < n; i++) {
 
              if (mp.has(arr[i])) {
                  mp.set(arr[i], mp.get(arr[i]) + 1);
              }
              else {
                  mp.set(arr[i], 1);
              }
          }
 
          for (let i = 0; i < n; i++) {
 
              let index = 1.0 * k / arr[i];
 
              // If k is not power of two
              if (index >= 0
                  && ((index - Math.floor(index)) == 0)
                  && mp.has(k / arr[i])
                  && (index != arr[i])) {
 
                  count += mp.get(arr[i]) * mp.get(index);
 
                  // After counting erase the element
                  mp.delete(arr[i]);
 
                  mp.delete(index);
              }
 
              // If k is power of 2
              if (index >= 0
                  && ((index - Math.floor(index)) == 0)
                  && mp.has(k / arr[i])
                  && (index == arr[i])) {
 
                  // Pair count
                  count += (mp.get(arr[i])
                      * (mp.get(arr[i]) - 1))
                      / 2;
 
                  // After counting erase the element;
                  mp.delete(arr[i]);
              }
          }
 
          return count;
      }
 
      // Driver Code
      let arr = [1, 2, 16, 4, 4, 4, 8];
      let N = arr.length;
      let K = 16;
      document.write(countPairsWithProductK(arr, N, K));
 
     // This code is contributed by Potta Lokesh
  </script>


 
 

Output

5


 

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments