Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AICount all possible N digit numbers that satisfy the given condition

Count all possible N digit numbers that satisfy the given condition

Given an integer N, the task is to count all possible N digit numbers such that A + reverse(A) = 10N – 1 where A is an N digit number and reverse(A) is reverse of A. A shouldn’t have any leading 0s.
Examples: 
 

Input: N = 2 
Output:
All possible 2 digit numbers are 90, 81, 72, 63, 54, 45, 36, 27 and 18.
Input: N = 4 
Output: 90 
 

 

Approach: First we have to conclude that if N is odd then there is no number which will satisfy the given condition, let’s prove it for N = 3
 

d_{3}d_{2}d_{1}+d_{1}d_{2}d_{3} = 999
so d_{3}+d_{1}=9   and 2*d_{2}=9
d_{2}=4.5   which is impossible as it is a floating point number. 
 

Now Find answer for when N is even. For example, N=4, 
 

d_{4}d_{3}d_{2}d_{1}+d_{1}d_{2}d_{3}d_{4} = 9999
d_{4}+d_{1}=9   and d_{3}+d_{2}=9   now if x + y = 9 then the number of pairs which satisfy this condition are 10. 
(0, 9), (1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3), (7, 2), (8, 1), (9, 0) 
Now, 1st and Nth digit cannot have the pair (0, 9) as there shouldn’t be any leading 0s in A but for all the remaining N/2-1 pairs there can be 10 pairs. 
So the answer is 9*10^{(N/2-1)}   , As N is large so we will print 9 followed by N/2-1 number of 0s. 
 

Below is the implementation of the above approach:
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of required numbers
string getCount(int N)
{
 
    // If N is odd then return 0
    if (N % 2 == 1)
        return 0;
 
    string result = "9";
 
    for (int i = 1; i <= N / 2 - 1; i++)
        result += "0";
 
    return result;
}
 
// Driver Code
int main()
{
 
    int N = 4;
    cout << getCount(N);
 
    return 0;
}


Java




// Java implementation of above approach
class GFG
{
    // Function to return the count of required numbers
    static String getCount(int N)
    {
     
        // If N is odd then return 0
        if (N % 2 == 1)
            return "0";
     
        String result = "9";
        for (int i = 1; i <= N / 2 - 1; i++)
            result += "0";
        return result;
    }
     
    // Driver Code
    public static void main(String []args)
    {
     
        int N = 4;
        System.out.println(getCount(N));
    }
}
 
// This code is contributed by ihritik


Python3




# Python3 implementation of above approach
 
# Function to return the count of required numbers
def getCount(N):
 
    # If N is odd then return 0
    if (N % 2 == 1):
        return "0"
 
    result = "9"
 
    for i in range (1, N // 2 ):
        result = result + "0"
 
    return result
 
# Driver Code
N = 4
print(getCount(N))
 
# This code is contributed by ihritik


C#




// C# implementation of above approach
using System;
 
class GFG
{
    // Function to return the count of required numbers
    static string getCount(int N)
    {
     
        // If N is odd then return 0
        if (N % 2 == 1)
            return "0";
        string result = "9";
        for (int i = 1; i <= N / 2 - 1; i++)
            result += "0";
        return result;
    }
     
    // Driver Code
    public static void Main()
    {
     
        int N = 4;
        Console.WriteLine(getCount(N));
    }
}
 
// This code is contributed by ihritik


PHP




<?php
// PHP implementation of above approach
 
// Function to return the count of
// required numbers
function getCount($N)
{
 
    // If N is odd then return 0
    if ($N % 2 == 1)
        return 0;
 
    $result = "9";
 
    for ($i = 1; $i <= $N / 2 - 1; $i++)
        $result .= "0";
 
    return $result;
}
 
// Driver Code
$N = 4;
echo getCount($N);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
    // Function to return the count of required numbers
    function getCount(N)
    {
     
        // If N is odd then return 0
        if (N % 2 == 1)
            return "0";
     
        let result = "9";
        for (let i = 1; i <= N / 2 - 1; i++)
            result += "0";
        return result;
    }
     
 
// Driver code
 
    let N = 4;
    document.write(getCount(N));
     
</script>


Output: 

90

 

Time Complexity: O(N)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments