Saturday, December 28, 2024
Google search engine
HomeData Modelling & AICount All Palindrome Sub-Strings in a String | Set 1

Count All Palindrome Sub-Strings in a String | Set 1

Given a string, the task is to count all palindrome sub string in a given string. Length of palindrome sub string is greater than or equal to 2. 

Examples:

Input : str = "abaab"
Output: 3
Explanation : 
All palindrome substring are :
 "aba" , "aa" , "baab" 

Input : str = "abbaeae"
Output: 4
Explanation : 
All palindrome substring are : 
"bb" , "abba" ,"aea","eae"

We have discussed a similar problem below. 
Find all distinct palindromic sub-strings of a given string

The above problem can be recursively defined. 

Initial Values : i = 0, j = n-1;
Given string 'str'

CountPS(i, j)
   
   // If length of string is 2 then we 
   // check both character are same or not 
   If (j == i+1)
      return str[i] == str[j]
   // this condition shows that in recursion if i crosses
   // j then it will be a invalid substring or
   // if i==j that means only one character is remaining 
   // and we require substring of length 2 
   //in both the conditions we need to return 0
   Else if(i == j ||  i > j) return 0;
   Else If str[i..j] is PALINDROME 
      // increment count by 1 and check for 
      // rest palindromic substring (i, j-1), (i+1, j)
      // remove common palindrome substring (i+1, j-1)
      return  countPS(i+1, j) + countPS(i, j-1) + 1 -
                                   countPS(i+1, j-1);

    Else // if NOT PALINDROME 
       // We check for rest palindromic substrings (i, j-1)
       // and (i+1, j)
       // remove common palindrome substring (i+1 , j-1)
       return  countPS(i+1, j) + countPS(i, j-1) - 
                             countPS(i+1 , j-1);

If we draw recursion tree of above recursive solution, we can observe overlapping Subproblems. Since the problem has overlapping sub-problems, we can solve it efficiently using Dynamic Programming. 

Below is a Dynamic Programming based solution. 

C++




// C++ program to find palindromic substrings of a string
#include <bits/stdc++.h>
using namespace std;
 
// Returns total number of palindrome substring of
// length greater than equal to 2
int CountPS(char str[], int n)
{
   //to store the count of palindrome subarrays
  int ans=0;
 
    // P[i][j] = true if substring str[i..j] is palindrome,
    // else false
    bool P[n][n];
    memset(P, false, sizeof(P));
 
    // palindrome of single length
    for (int i = 0; i < n; i++){
        P[i][i] = true;
    }
 
 
    // Palindromes of length more than or equal to 2. We start with
    // a gap of length 1 and fill the DP table in a way that
    // gap between starting and ending indexes increases one
    // by one by outer loop.
    for (int gap = 2; gap <=n; gap++) {
        // Pick starting point for current gap
        for (int i = 0; i <= n-gap; i++) {
            // Set ending point
            int j = gap + i-1;
 
            // check If current string is palindrome of length 2
            if(i==j-1){
              P[i][j]=(str[i]==str[j]);
            }else {
              //check if the current substring is palindrome of length more than 2
              //if characters at index i,j are equal check for string in between them
              //from i+1 to j-1 if it is palindrome or not
              P[i][j]=(str[i]==str[j] && P[i+1][j-1]);
            }
          //if substring from index i to j is palindrome increase the count
          if(P[i][j]){
            ans++;
          }
        }
    }
 
    // return total palindromic substrings
    return ans;
}
 
// Driver code
int main()
{
    char str[] = "abaab";
    int n = strlen(str);
    cout << CountPS(str, n) << endl;
    return 0;
}


Java




// Java program to find palindromic substrings of a string
 
public class GFG {
    // Returns total number of palindrome substring of
    // length greater than equal to 2
    static int CountPS(char str[], int n)
    {
        // create empty 2-D matrix that counts all
        // palindrome substring. dp[i][j] stores counts of
        // palindromic substrings in st[i..j]
        int dp[][] = new int[n][n];
 
        // P[i][j] = true if substring str[i..j] is
        // palindrome, else false
        boolean P[][] = new boolean[n][n];
 
        // palindrome of single length
        for (int i = 0; i < n; i++)
            P[i][i] = true;
 
        // palindrome of length 2
        for (int i = 0; i < n - 1; i++) {
            if (str[i] == str[i + 1]) {
                P[i][i + 1] = true;
                dp[i][i + 1] = 1;
            }
        }
 
        // Palindromes of length more than 2. This loop is
        // similar to Matrix Chain Multiplication. We start
        // with a gap of length 2 and fill the DP table in a
        // way that gap between starting and ending indexes
        // increases one by one by outer loop.
        for (int gap = 2; gap < n; gap++) {
            // Pick starting point for current gap
            for (int i = 0; i < n - gap; i++) {
                // Set ending point
                int j = gap + i;
 
                // If current string is palindrome
                if (str[i] == str[j] && P[i + 1][j - 1])
                    P[i][j] = true;
 
                // Add current palindrome substring ( + 1)
                // and rest palindrome substring (dp[i][j-1]
                // + dp[i+1][j]) remove common palindrome
                // substrings (- dp[i+1][j-1])
                if (P[i][j] == true)
                    dp[i][j] = dp[i][j - 1] + dp[i + 1][j]
                               + 1 - dp[i + 1][j - 1];
                else
                    dp[i][j] = dp[i][j - 1] + dp[i + 1][j]
                               - dp[i + 1][j - 1];
            }
        }
 
        // return total palindromic substrings
        return dp[0][n - 1];
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String str = "abaab";
        System.out.println(
            CountPS(str.toCharArray(), str.length()));
    }
}


Python3




# Python3 program to find palindromic
# substrings of a string
 
# Returns total number of palindrome
# substring of length greater than
# equal to 2
 
 
def CountPS(str, n):
 
    # create empty 2-D matrix that counts
    # all palindrome substring. dp[i][j]
    # stores counts of palindromic
    # substrings in st[i..j]
    dp = [[0 for x in range(n)]
          for y in range(n)]
 
    # P[i][j] = true if substring str[i..j]
    # is palindrome, else false
    P = [[False for x in range(n)]
         for y in range(n)]
 
    # palindrome of single length
    for i in range(n):
        P[i][i] = True
 
    # palindrome of length 2
    for i in range(n - 1):
        if (str[i] == str[i + 1]):
            P[i][i + 1] = True
            dp[i][i + 1] = 1
 
    # Palindromes of length more than 2. This
    # loop is similar to Matrix Chain Multiplication.
    # We start with a gap of length 2 and fill DP
    # table in a way that the gap between starting and
    # ending indexes increase one by one by
    # outer loop.
    for gap in range(2, n):
 
        # Pick a starting point for the current gap
        for i in range(n - gap):
 
            # Set ending point
            j = gap + i
 
            # If current string is palindrome
            if (str[i] == str[j] and P[i + 1][j - 1]):
                P[i][j] = True
 
            # Add current palindrome substring ( + 1)
            # and rest palindrome substring (dp[i][j-1] +
            # dp[i+1][j]) remove common palindrome
            # substrings (- dp[i+1][j-1])
            if (P[i][j] == True):
                dp[i][j] = (dp[i][j - 1] +
                            dp[i + 1][j] + 1 - dp[i + 1][j - 1])
            else:
                dp[i][j] = (dp[i][j - 1] +
                            dp[i + 1][j] - dp[i + 1][j - 1])
 
    # return total palindromic substrings
    return dp[0][n - 1]
 
 
# Driver Code
if __name__ == "__main__":
 
    str = "abaab"
    n = len(str)
    print(CountPS(str, n))
 
# This code is contributed by ita_c


C#




// C# program to find palindromic
// substrings of a string
using System;
 
class GFG {
    // Returns total number of
    // palindrome substring of
    // length greater than equal to 2
    public static int CountPS(char[] str, int n)
    {
        // create empty 2-D matrix that counts
        // all palindrome substring. dp[i][j]
        // stores counts of palindromic
        // substrings in st[i..j]
 
        int[][] dp
            = RectangularArrays.ReturnRectangularIntArray(
                n, n);
 
        // P[i][j] = true if substring str[i..j]
        // is palindrome, else false
 
        bool[][] P
            = RectangularArrays.ReturnRectangularBoolArray(
                n, n);
 
        // palindrome of single length
        for (int i = 0; i < n; i++) {
            P[i][i] = true;
        }
 
        // palindrome of length 2
        for (int i = 0; i < n - 1; i++) {
            if (str[i] == str[i + 1]) {
                P[i][i + 1] = true;
                dp[i][i + 1] = 1;
            }
        }
 
        // Palindromes of length more than 2.
        // This loop is similar to Matrix Chain
        // Multiplication. We start with a gap
        // of length 2 and fill DP table in a
        // way that gap between starting and
        // ending indexes increases one by one
        // by outer loop.
        for (int gap = 2; gap < n; gap++) {
            // Pick starting point for current gap
            for (int i = 0; i < n - gap; i++) {
                // Set ending point
                int j = gap + i;
 
                // If current string is palindrome
                if (str[i] == str[j] && P[i + 1][j - 1]) {
                    P[i][j] = true;
                }
 
                // Add current palindrome substring
                // ( + 1) and rest palindrome substring
                // (dp[i][j-1] + dp[i+1][j]) remove common
                // palindrome substrings (- dp[i+1][j-1])
                if (P[i][j] == true) {
                    dp[i][j] = dp[i][j - 1] + dp[i + 1][j]
                               + 1 - dp[i + 1][j - 1];
                }
                else {
                    dp[i][j] = dp[i][j - 1] + dp[i + 1][j]
                               - dp[i + 1][j - 1];
                }
            }
        }
 
        // return total palindromic substrings
        return dp[0][n - 1];
    }
 
    public static class RectangularArrays {
        public static int[][] ReturnRectangularIntArray(
            int size1, int size2)
        {
            int[][] newArray = new int[size1][];
            for (int array1 = 0; array1 < size1; array1++) {
                newArray[array1] = new int[size2];
            }
 
            return newArray;
        }
 
        public static bool[][] ReturnRectangularBoolArray(
            int size1, int size2)
        {
            bool[][] newArray = new bool[size1][];
            for (int array1 = 0; array1 < size1; array1++) {
                newArray[array1] = new bool[size2];
            }
 
            return newArray;
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        string str = "abaab";
        Console.WriteLine(
            CountPS(str.ToCharArray(), str.Length));
    }
}
 
// This code is contributed by Shrikant13


PHP




<?php
// PHP program to find palindromic substrings
// of a string
 
// Returns total number of palindrome
// substring of length greater than equal to 2
function CountPS($str, $n)
{
    // create empty 2-D matrix that counts
    // all palindrome substring. dp[i][j]
    // stores counts of palindromic
    // substrings in st[i..j]
    $dp = array(array());
     
    for ($i = 0; $i < $n; $i++)
        for($j = 0; $j < $n; $j++)
            $dp[$i][$j] = 0;
 
    // P[i][j] = true if substring str[i..j] 
    // is palindrome, else false
    $P = array(array());
        for ($i = 0; $i < $n; $i++)
            for($j = 0; $j < $n; $j++)
                $P[$i][$j] = false;
 
    // palindrome of single length
    for ($i= 0; $i< $n; $i++)
        $P[$i][$i] = true;
 
    // palindrome of length 2
    for ($i = 0; $i < $n - 1; $i++)
    {
        if ($str[$i] == $str[$i + 1])
        {
            $P[$i][$i + 1] = true;
            $dp[$i][$i + 1] = 1;
        }
    }
 
    // Palindromes of length more than 2. This
    // loop is similar to Matrix Chain Multiplication.
    // We start with a gap of length 2 and fill DP
    // table in a way that gap between starting and
    // ending indexes increases one by one by
    // outer loop.
    for ($gap = 2; $gap < $n; $gap++)
    {
        // Pick starting point for current gap
        for ($i = 0; $i < $n - $gap; $i++)
        {
            // Set ending point
            $j = $gap + $i;
 
            // If current string is palindrome
            if ($str[$i] == $str[$j] && $P[$i + 1][$j - 1])
                $P[$i][$j] = true;
 
            // Add current palindrome substring (+ 1)
            // and rest palindrome substring (dp[i][j-1] +
            // dp[i+1][j]) remove common palindrome
            // substrings (- dp[i+1][j-1])
            if ($P[$i][$j] == true)
                $dp[$i][$j] = $dp[$i][$j - 1] +
                              $dp[$i + 1][$j] + 1 -
                              $dp[$i + 1][$j - 1];
            else
                $dp[$i][$j] = $dp[$i][$j - 1] +
                              $dp[$i + 1][$j] -
                              $dp[$i + 1][$j - 1];
        }
    }
 
    // return total palindromic substrings
    return $dp[0][$n - 1];
}
 
// Driver Code
$str = "abaab";
$n = strlen($str);
echo CountPS($str, $n);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript program to find palindromic substrings of a string
     
    // Returns total number of palindrome substring of
    // length greater than equal to 2
    function CountPS(str,n)
    {
        // create empty 2-D matrix that counts all
        // palindrome substring. dp[i][j] stores counts of
        // palindromic substrings in st[i..j]
        let dp=new Array(n);
         
        // P[i][j] = true if substring str[i..j] is
        // palindrome, else false
        let P=new Array(n);
         
        for(let i=0;i<n;i++)
        {
            dp[i]=new Array(n);
            P[i]=new Array(n);
            for(let j=0;j<n;j++)
            {
                dp[i][j]=0;
                P[i][j]=false;
            }
        }
         
        // palindrome of single length
        for (let i = 0; i < n; i++)
            P[i][i] = true;
  
        // palindrome of length 2
        for (let i = 0; i < n - 1; i++) {
            if (str[i] == str[i + 1]) {
                P[i][i + 1] = true;
                dp[i][i + 1] = 1;
            }
        }
  
        // Palindromes of length more than 2. This loop is
        // similar to Matrix Chain Multiplication. We start
        // with a gap of length 2 and fill the DP table in a
        // way that gap between starting and ending indexes
        // increases one by one by outer loop.
        for (let gap = 2; gap < n; gap++) {
            // Pick starting point for current gap
            for (let i = 0; i < n - gap; i++) {
                // Set ending point
                let j = gap + i;
  
                // If current string is palindrome
                if (str[i] == str[j] && P[i + 1][j - 1])
                    P[i][j] = true;
  
                // Add current palindrome substring ( + 1)
                // and rest palindrome substring (dp[i][j-1]
                // + dp[i+1][j]) remove common palindrome
                // substrings (- dp[i+1][j-1])
                if (P[i][j] == true)
                    dp[i][j] = dp[i][j - 1] + dp[i + 1][j]
                               + 1 - dp[i + 1][j - 1];
                else
                    dp[i][j] = dp[i][j - 1] + dp[i + 1][j]
                               - dp[i + 1][j - 1];
            }
        }
  
        // return total palindromic substrings
        return dp[0][n - 1];
    }
     
    // Driver code
    let str = "abaab";
    document.write(
            CountPS(str.split(""), str.length));
     
    // This code is contributed by avanitrachhadiya2155
     
</script>


Output

3

Time Complexity: O(n2
Auxiliary Space: O(n2

Method 2: This approach uses Top Down DP i.e memoized version of recursion.

Recursive soln:
1. Here base condition comes out to be i>j if we hit this condition, return 1.
2. We check for each and every i and j, if the characters are equal, 
   if that is not the case, return 0.
3. Call the is_palindrome function again with incremented i  and decremented j.
4. Check this for all values of i and j by applying 2 for loops.

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
int dp[1001][1001]; // 2D matrix
bool isPal(string s, int i, int j)
{
    // Base condition
    if (i > j)
        return 1;
 
    // check if the recursive tree
    // for given i, j
    // has already been executed
    if (dp[i][j] != -1)
        return dp[i][j];
 
    // If first and last characters of
    // substring are unequal
    if (s[i] != s[j])
        return dp[i][j] = 0;
 
    // memoization
    return dp[i][j] = isPal(s, i + 1, j - 1);
}
 
int countSubstrings(string s)
{
    memset(dp, -1, sizeof(dp));
    int n = s.length();
    int count = 0;
 
    // 2 for loops are required to check for
    // all the palindromes in the string.
    for (int i = 0; i < n; i++)
    {
        for (int j = i + 1; j < n; j++)
        {
            // Increment count for every palindrome
            if (isPal(s, i, j))
                count++;
        }
    }
    // return total palindromic substrings
    return count;
}
 
// Driver code
int main()
{
 
    string s = "abbaeae";
 
    cout << countSubstrings(s);
 
    //"bb" , "abba" ,"aea", "eae" are
    // the 4 palindromic substrings.
 
    // This code is contributed by Bhavneet Singh
 
    return 0;
}


Java




import java.util.*;
public class Main
{
    static int dp[][] = new int[1001][1001]; // 2D matrix
     
    public static int isPal(String s, int i, int j)
    {
        // Base condition
        if (i > j)
            return 1;
      
        // check if the recursive tree
        // for given i, j
        // has already been executed
        if (dp[i][j] != -1)
            return dp[i][j];
      
        // If first and last characters of
        // substring are unequal
        if (s.charAt(i) != s.charAt(j))
            return dp[i][j] = 0;
      
        // memoization
        return dp[i][j] = isPal(s, i + 1, j - 1);
    }
      
    public static int countSubstrings(String s)
    {
        for (int[] row: dp)
        {
            Arrays.fill(row, -1);
        }
        int n = s.length();
        int count = 0;
      
        // 2 for loops are required to check for
        // all the palindromes in the string.
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
                // Increment count for every palindrome
                if (isPal(s, i, j) != 0)
                    count++;
            }
        }
       
        // return total palindromic substrings
        return count;
    }
 
    public static void main(String[] args) {
        String s = "abbaeae";
  
        System.out.println(countSubstrings(s));
    }
}
 
// This code is contributed by divyeshrabadiya07


Python3




# 2D matrix
dp = [[-1 for i in range(1001)]
          for j in range(1001)]
 
def isPal(s, i, j):
     
    # Base condition
    if (i > j):
        return 1
 
    # Check if the recursive tree
    # for given i, j
    # has already been executed
    if (dp[i][j] != -1):
        return dp[i][j]
 
    # If first and last characters of
    # substring are unequal
    if (s[i] != s[j]):
        dp[i][j] = 0
        return dp[i][j]
         
    # Memoization
    dp[i][j] = isPal(s, i + 1, j - 1)
     
    return dp[i][j]
 
def countSubstrings(s):
     
    n = len(s)
 
    count = 0
 
    # 2 for loops are required to check for
    # all the palindromes in the string.
    for i in range(n):
        for j in range(i + 1, n):
             
            # Increment count for every palindrome
            if (isPal(s, i, j)):
                count += 1
 
    # Return total palindromic substrings
    return count
 
# Driver code
s = "abbaeae"
 
print(countSubstrings(s))
 
# This code is contributed by rag2127


C#




using System;
 
class GFG{
 
// 2D matrix
static int[,] dp = new int[1001, 1001];
 
static int isPal(string s, int i, int j)
{
     
    // Base condition
    if (i > j)
        return 1;
   
    // Check if the recursive tree
    // for given i, j
    // has already been executed
    if (dp[i, j] != -1)
        return dp[i, j];
   
    // If first and last characters of
    // substring are unequal
    if (s[i] != s[j])
        return dp[i, j] = 0;
   
    // Memoization
    return dp[i, j] = isPal(s, i + 1, j - 1);
}
   
static int countSubstrings(string s)
{
    for(int i = 0; i < 1001; i++)
    {
        for(int j = 0; j < 1001; j++)
        {
            dp[i, j] = -1;
        }
    }
     
    int n = s.Length;
    int count = 0;
   
    // 2 for loops are required to check for
    // all the palindromes in the string.
    for(int i = 0; i < n; i++)
    {
        for(int j = i + 1; j < n; j++)
        {
             
            // Increment count for every palindrome
            if (isPal(s, i, j) != 0)
                count++;
        }
    }
     
    // Return total palindromic substrings
    return count;
}
 
// Driver Code   
static void Main()
{
    string s = "abbaeae";
     
    Console.WriteLine(countSubstrings(s));
}
}
 
// This code is contributed by divyesh072019


Javascript




<script>
    var dp = Array(1001).fill().map(()=>Array(1001).fill(-1)); // 2D matrix
 
    function isPal( s , i , j)
    {
     
        // Base condition
        if (i > j)
            return 1;
 
        // check if the recursive tree
        // for given i, j
        // has already been executed
        if (dp[i][j] != -1)
            return dp[i][j];
 
        // If first and last characters of
        // substring are unequal
        if (s.charAt(i) != s.charAt(j))
            return dp[i][j] = 0;
 
        // memoization
        return dp[i][j] = isPal(s, i + 1, j - 1);
    }
 
    function countSubstrings( s) {
         
        var n = s.length;
        var count = 0;
 
        // 2 for loops are required to check for
        // all the palindromes in the string.
        for (i = 0; i < n; i++) {
            for (j = i + 1; j < n; j++) {
                // Increment count for every palindrome
                if (isPal(s, i, j) != 0)
                    count++;
            }
        }
 
        // return total palindromic substrings
        return count;
    }
 
    // Driver code
        var s = "abbaeae";
        document.write(countSubstrings(s));
     
// This code is contributed by Rajput-Ji
</script>


Output

4

Time Complexity: O(n3
Auxiliary Space: O(n2

Count All Palindrome Sub-Strings in a String | Set 2

This article is contributed by Nishant_Singh(Pintu). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Previous article
Next article
RELATED ARTICLES

Most Popular

Recent Comments