Given a directed graph of N vertices valued from 0 to N – 1 and array graph[] of size K represents the Adjacency List of the given graph, the task is to count all Hamiltonian Paths in it which start at the 0th vertex and end at the (N – 1)th vertex.
Note: Hamiltonian path is defined as the path which visits every vertex of the graph exactly once.
Examples:
Input: N = 4, K = 6, graph[][] = {{1, 2}, {1, 3}, {2, 3}, {3, 2}, {2, 4}, {3, 4}}
Output: 2
Explanation:
The paths below shown are 1 -> 3 -> 2 -> 4 and 1 -> 2 -> 3 -> 4 starts at 1 and ends at 4 and are called Hamiltonian paths.
Input: N = 2, K = 1, graph[][] = {{1, 2}}
Output: 1
Approach: The given problem can be solved by using Bitmasking with Dynamic Programming, and iterate over all subsets of the given vertices represented by an N size mask and check if there exists a Hamiltonian Path that starts at the 0th vertex and ends at (N – 1)th vertex and count all such paths. Let’s say for a graph having N vertices S represents a bitmask where S = 0 to S = (1 << N) -1 and dp[i][S] represents the number of paths that visits every vertex in the mask S and ends at i then the valid recurrence will be given as dp[i][S] = ∑ dp[j][S XOR 2i] where j ∈ S and there is an edge from j to i where S XOR 2i represents the subset which does not have the ith vertex in it and there must be an edge from j to i. Follow the steps below to solve the given problem:
- Initialize a 2-D array dp[N][2N] with 0 and set dp[0][1] as 1.
- Iterate over the range from [2, 2N – 1] using the variable i and check for the mask having all bits set in it.
- Iterate over the range from [0, N) using the variable end and traverse over all bits of the current mask and assume each bit as the ending bit.
- Initialize the variable prev as i – (1 << end).
- Iterate over the range [0, size) where size is the size of the array graph[end] using the variable it and traverse over the adjacent vertices of the current ending bit and update the dp[][] array like this dp[end][i] += dp[it][prev].
- Iterate over the range from [0, N) using the variable end and traverse over all bits of the current mask and assume each bit as the ending bit.
- After performing the above steps, print the value of dp[N-1][2N – 1] as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find all possible paths void findAllPaths( int N, vector<vector< int > >& graph) { // Initialize a dp array int dp[N][(1 << N)]; // Initialize it with 0 memset (dp, 0, sizeof dp); // Initialize for the first vertex dp[0][1] = 1; // Iterate over all the masks for ( int i = 2; i < (1 << N); i++) { // If the first vertex is absent if ((i & (1 << 0)) == 0) continue ; // Only consider the full subsets if ((i & (1 << (N - 1))) && i != ((1 << N) - 1)) continue ; // Choose the end city for ( int end = 0; end < N; end++) { // If this city is not in the subset if (i & (1 << end) == 0) continue ; // Set without the end city int prev = i - (1 << end); // Check for the adjacent cities for ( int it : graph[end]) { if ((i & (1 << it))) { dp[end][i] += dp[it][prev]; } } } } // Print the answer cout << dp[N - 1][(1 << N) - 1]; } // Driver Code int main() { int N = 4; vector<vector< int > > graph(N); graph[1].push_back(0); graph[2].push_back(0); graph[2].push_back(1); graph[1].push_back(2); graph[3].push_back(1); graph[3].push_back(2); findAllPaths(N, graph); return 0; } |
Java
//Java program to count all Hamiltonian //paths in a given directed graph import java.io.*; import java.util.*; class GFG { // Function to find all possible paths static void findAllPaths( int N, List<List<Integer>> graph){ // Initialize a dp array int dp[][] = new int [N][( 1 <<N)]; // Initialize it with 0 for ( int i= 0 ;i<N;i++){ for ( int j= 0 ;j<( 1 <<N);j++){ dp[i][j]= 0 ; } } // Initialize for the first vertex dp[ 0 ][ 1 ] = 1 ; // Iterate over all the masks for ( int i = 2 ; i < ( 1 << N); i++) { // If the first vertex is absent if ((i & ( 1 << 0 )) == 0 ){ continue ; } // Only consider the full subsets if ((i & ( 1 << (N - 1 )))== 1 && (i != (( 1 << N) - 1 ))){ continue ; } // Choose the end city for ( int end = 0 ; end < N; end++) { // If this city is not in the subset if ((i & ( 1 << end)) == 0 ){ continue ; } // Set without the end city int prev = i - ( 1 << end); // Check for the adjacent cities for ( int it : graph.get(end)) { if ((i & ( 1 << it))!= 0 ) { dp[end][i] += dp[it][prev]; } } } } System.out.print(dp[N - 1 ][( 1 << N) - 1 ]); } //Driver Code public static void main (String[] args) { int N= 4 ; List<List<Integer>> graph = new ArrayList<>(); for ( int i= 0 ;i<N;i++){ graph.add( new ArrayList<Integer>()); } graph.get( 1 ).add( 0 ); graph.get( 2 ).add( 0 ); graph.get( 2 ).add( 1 ); graph.get( 1 ).add( 2 ); graph.get( 3 ).add( 1 ); graph.get( 3 ).add( 2 ); findAllPaths(N, graph); } } //This code is contributed by shruti456rawal |
Python3
# python program for the above approach # Function to find all possible paths def findAllPaths(N, graph): # Initialize a dp array # Initialize it with 0 dp = [[ 0 for _ in range ( 1 << N)] for _ in range (N)] # Initialize for the first vertex dp[ 0 ][ 1 ] = 1 # Iterate over all the masks for i in range ( 2 , ( 1 << N)): # If the first vertex is absent if ((i & ( 1 << 0 )) = = 0 ): continue # Only consider the full subsets if ((i & ( 1 << (N - 1 ))) and i ! = (( 1 << N) - 1 )): continue # Choose the end city for end in range ( 0 , N): # If this city is not in the subset if (i & ( 1 << end) = = 0 ): continue # Set without the end city prev = i - ( 1 << end) # Check for the adjacent cities for it in graph[end]: if ((i & ( 1 << it))): dp[end][i] + = dp[it][prev] # Print the answer print (dp[N - 1 ][( 1 << N) - 1 ]) # Driver Code if __name__ = = "__main__" : N = 4 graph = [[] for _ in range (N)] graph[ 1 ].append( 0 ) graph[ 2 ].append( 0 ) graph[ 2 ].append( 1 ) graph[ 1 ].append( 2 ) graph[ 3 ].append( 1 ) graph[ 3 ].append( 2 ) findAllPaths(N, graph) # This code is contributed by rakeshsahni |
Javascript
<script> // Javascript program for the above approach // Function to find all possible paths function findAllPaths(N, graph) { // Initialize a dp array let dp = new Array(N).fill(0).map(() => new Array(1 << N).fill(0)); // Initialize for the first vertex dp[0][1] = 1; // Iterate over all the masks for (let i = 2; i < 1 << N; i++) { // If the first vertex is absent if ((i & (1 << 0)) == 0) continue ; // Only consider the full subsets if (i & (1 << (N - 1)) && i != (1 << N) - 1) continue ; // Choose the end city for (let end = 0; end < N; end++) { // If this city is not in the subset if (i & (1 << end == 0)) continue ; // Set without the end city let prev = i - (1 << end); // Check for the adjacent cities for (let it of graph[end]) { if (i & (1 << it)) { dp[end][i] += dp[it][prev]; } } } } // Print the answer document.write(dp[N - 1][(1 << N) - 1]); } // Driver Code let N = 4; let graph = new Array(N).fill(0).map(() => []); graph[1].push(0); graph[2].push(0); graph[2].push(1); graph[1].push(2); graph[3].push(1); graph[3].push(2); findAllPaths(N, graph); // This code is contributed by gfgking. </script> |
C#
//C# program to count all Hamiltonian //paths in a given directed graph using System; using System.Collections.Generic; public class GFG { // Function to find all possible paths static void findAllPaths( int N, List<List< int >> graph) { // Initialize a dp array int [][] dp = new int [N][]; for ( int i = 0; i < N; i++) { dp[i] = new int [1 << N]; } // Initialize it with 0 for ( int i = 0; i < N; i++) { for ( int j = 0; j < (1 << N); j++) { dp[i][j] = 0; } } // Initialize for the first vertex dp[0][1] = 1; // Iterate over all the masks for ( int i = 2; i < (1 << N); i++) { // If the first vertex is absent if ((i & (1 << 0)) == 0) { continue ; } // Only consider the full subsets if ((i & (1 << (N - 1))) == 1 && (i != ((1 << N) - 1))) { continue ; } // Choose the end city for ( int end = 0; end < N; end++) { // If this city is not in the subset if ((i & (1 << end)) == 0) { continue ; } // Set without the end city int prev = i - (1 << end); // Check for the adjacent cities foreach ( int it in graph[end]) { if ((i & (1 << it)) != 0) { dp[end][i] += dp[it][prev]; } } } } Console.WriteLine(dp[N - 1][(1 << N) - 1]); } //Driver Code public static void Main( string [] args) { int N = 4; List<List< int >> graph = new List<List< int >>(); for ( int i = 0; i < N; i++) { graph.Add( new List< int >()); } graph[1].Add(0); graph[2].Add(0); graph[2].Add(1); graph[1].Add(2); graph[3].Add(1); graph[3].Add(2); findAllPaths(N, graph); } } |
2
Time Complexity: O(N*2N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!