Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIConvert a given tree to its Sum Tree

Convert a given tree to its Sum Tree

Given a Binary Tree where each node has positive and negative values. Convert this to a tree where each node contains the sum of the left and right sub trees in the original tree. The values of leaf nodes are changed to 0.

For example, the following tree  

                  10
               /      \
             -2        6
           /   \      /  \ 
         8     -4    7    5

should be changed to 

                 20(4-2+12+6)
               /      \
         4(8-4)      12(7+5)
           /   \      /  \ 
         0      0    0    0
Recommended Problem

Solution: 
Do a traversal of the given tree. In the traversal, store the old value of the current node, recursively call for left and right subtrees and change the value of current node as sum of the values returned by the recursive calls. Finally, return the sum of new value and value (which is sum of values in the subtree rooted with this node). 

C++




// C++ program to convert a tree into its sum tree
#include <bits/stdc++.h>
using namespace std;
 
/* A tree node structure */
class node
{
    public:
int data;
node *left;
node *right;
};
 
// Convert a given tree to a tree where
// every node contains sum of values of
// nodes in left and right subtrees in the original tree
int toSumTree(node *Node)
{
    // Base case
    if(Node == NULL)
    return 0;
 
    // Store the old value
    int old_val = Node->data;
 
    // Recursively call for left and
    // right subtrees and store the sum as
    // old value of this node
    Node->data = toSumTree(Node->left) + toSumTree(Node->right);
 
    // Return the sum of values of nodes
    // in left and right subtrees and
    // old_value of this node
    return Node->data + old_val;
}
 
// A utility function to print
// inorder traversal of a Binary Tree
void printInorder(node* Node)
{
    if (Node == NULL)
        return;
    printInorder(Node->left);
    cout<<" "<<Node->data;
    printInorder(Node->right);
}
 
/* Utility function to create a new Binary Tree node */
node* newNode(int data)
{
    node *temp = new node;
    temp->data = data;
    temp->left = NULL;
    temp->right = NULL;
     
    return temp;
}
 
/* Driver code */
int main()
{
    node *root = NULL;
    int x;
     
    /* Constructing tree given in the above figure */
    root = newNode(10);
    root->left = newNode(-2);
    root->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right = newNode(-4);
    root->right->left = newNode(7);
    root->right->right = newNode(5);
     
    toSumTree(root);
     
    // Print inorder traversal of the converted
    // tree to test result of toSumTree()
    cout<<"Inorder Traversal of the resultant tree is: \n";
    printInorder(root);
    return 0;
}
 
// This code is contributed by rathbhupendra


C




#include<stdio.h>
 
/* A tree node structure */
struct node
{
  int data;
  struct node *left;
  struct node *right;
};
 
// Convert a given tree to a tree where every node contains sum of values of
// nodes in left and right subtrees in the original tree
int toSumTree(struct node *node)
{
    // Base case
    if(node == NULL)
      return 0;
 
    // Store the old value
    int old_val = node->data;
 
    // Recursively call for left and right subtrees and store the sum as
    // new value of this node
    node->data = toSumTree(node->left) + toSumTree(node->right);
 
    // Return the sum of values of nodes in left and right subtrees and
    // old_value of this node
    return node->data + old_val;
}
 
// A utility function to print inorder traversal of a Binary Tree
void printInorder(struct node* node)
{
     if (node == NULL)
          return;
     printInorder(node->left);
     printf("%d ", node->data);
     printInorder(node->right);
}
 
/* Utility function to create a new Binary Tree node */
struct node* newNode(int data)
{
  struct node *temp = new struct node;
  temp->data = data;
  temp->left = NULL;
  temp->right = NULL;
 
  return temp;
}
 
/* Driver function to test above functions */
int main()
{
  struct node *root = NULL;
  int x;
 
  /* Constructing tree given in the above figure */
  root = newNode(10);
  root->left = newNode(-2);
  root->right = newNode(6);
  root->left->left = newNode(8);
  root->left->right = newNode(-4);
  root->right->left = newNode(7);
  root->right->right = newNode(5);
 
  toSumTree(root);
 
  // Print inorder traversal of the converted tree to test result of toSumTree()
  printf("Inorder Traversal of the resultant tree is: \n");
  printInorder(root);
 
  getchar();
  return 0;
}


Java




// Java program to convert a tree into its sum tree
  
// A binary tree node
class Node
{
    int data;
    Node left, right;
  
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
class BinaryTree
{
    Node root;
  
    // Convert a given tree to a tree where every node contains sum of
    // values of nodes in left and right subtrees in the original tree
    int toSumTree(Node node)
    {
        // Base case
        if (node == null)
            return 0;
  
        // Store the old value
        int old_val = node.data;
  
        // Recursively call for left and right subtrees and store the sum
        // as new value of this node
        node.data = toSumTree(node.left) + toSumTree(node.right);
  
        // Return the sum of values of nodes in left and right subtrees
        // and old_value of this node
        return node.data + old_val;
    }
  
    // A utility function to print inorder traversal of a Binary Tree
    void printInorder(Node node)
    {
        if (node == null)
            return;
        printInorder(node.left);
        System.out.print(node.data + " ");
        printInorder(node.right);
    }
  
    /* Driver function to test above functions */
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
  
        /* Constructing tree given in the above figure */
        tree.root = new Node(10);
        tree.root.left = new Node(-2);
        tree.root.right = new Node(6);
        tree.root.left.left = new Node(8);
        tree.root.left.right = new Node(-4);
        tree.root.right.left = new Node(7);
        tree.root.right.right = new Node(5);
  
        tree.toSumTree(tree.root);
  
        // Print inorder traversal of the converted tree to test result
        // of toSumTree()
        System.out.println("Inorder Traversal of the resultant tree is:");
        tree.printInorder(tree.root);
    }
}
 
// This code has been contributed by Mayank Jaiswal


Python3




# Python3 program to convert a tree
# into its sum tree
 
# Node definition
class node:
     
    def __init__(self, data):
        self.left = None
        self.right = None
        self.data = data
 
# Convert a given tree to a tree where
# every node contains sum of values of
# nodes in left and right subtrees
# in the original tree
def toSumTree(Node) :
     
    # Base case
    if(Node == None) :
        return 0
 
    # Store the old value
    old_val = Node.data
 
    # Recursively call for left and
    # right subtrees and store the sum as
    # new value of this node
    Node.data = toSumTree(Node.left) + \
                toSumTree(Node.right)
 
    # Return the sum of values of nodes
    # in left and right subtrees and
    # old_value of this node
    return Node.data + old_val
 
# A utility function to print
# inorder traversal of a Binary Tree
def printInorder(Node) :
    if (Node == None) :
        return
    printInorder(Node.left)
    print(Node.data, end = " ")
    printInorder(Node.right)
     
# Utility function to create a new Binary Tree node
def newNode(data) :
    temp = node(0)
    temp.data = data
    temp.left = None
    temp.right = None
     
    return temp
 
# Driver Code
if __name__ == "__main__":
    root = None
    x = 0
     
    # Constructing tree given in the above figure
    root = newNode(10)
    root.left = newNode(-2)
    root.right = newNode(6)
    root.left.left = newNode(8)
    root.left.right = newNode(-4)
    root.right.left = newNode(7)
    root.right.right = newNode(5)
     
    toSumTree(root)
     
    # Print inorder traversal of the converted
    # tree to test result of toSumTree()
    print("Inorder Traversal of the resultant tree is: ")
    printInorder(root)
 
# This code is contributed by Arnab Kundu


C#




// C# program to convert a tree
// into its sum tree
using System;
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class GFG
{
public Node root;
 
// Convert a given tree to a tree where
// every node contains sum of values of
// nodes in left and right subtrees in
// the original tree
public virtual int toSumTree(Node node)
{
    // Base case
    if (node == null)
    {
        return 0;
    }
 
    // Store the old value
    int old_val = node.data;
 
    // Recursively call for left and
    // right subtrees and store the sum
    // as new value of this node
    node.data = toSumTree(node.left) +
                toSumTree(node.right);
 
    // Return the sum of values of nodes
    // in left and right subtrees old_value
    // of this node
    return node.data + old_val;
}
 
// A utility function to print
// inorder traversal of a Binary Tree
public virtual void printInorder(Node node)
{
    if (node == null)
    {
        return;
    }
    printInorder(node.left);
    Console.Write(node.data + " ");
    printInorder(node.right);
}
 
// Driver Code
public static void Main(string[] args)
{
    GFG tree = new GFG();
 
    /* Constructing tree given in
       the above figure */
    tree.root = new Node(10);
    tree.root.left = new Node(-2);
    tree.root.right = new Node(6);
    tree.root.left.left = new Node(8);
    tree.root.left.right = new Node(-4);
    tree.root.right.left = new Node(7);
    tree.root.right.right = new Node(5);
 
    tree.toSumTree(tree.root);
 
    // Print inorder traversal of the
    // converted tree to test result of toSumTree()
    Console.WriteLine("Inorder Traversal of " +
                     "the resultant tree is:");
    tree.printInorder(tree.root);
}
}
 
// This code is contributed by Shrikant13


Javascript




<script>
  
// JavaScript program to convert a tree
// into its sum tree
 
// A binary tree node
class Node
{
    constructor(item)
    {
        this.data = item;
        this.left = null;
        this.right = null;
    }
}
 
 
var root = null;
 
// Convert a given tree to a tree where
// every node contains sum of values of
// nodes in left and right subtrees in
// the original tree
function toSumTree(node)
{
    // Base case
    if (node == null)
    {
        return 0;
    }
 
    // Store the old value
    var old_val = node.data;
 
    // Recursively call for left and
    // right subtrees and store the sum
    // as new value of this node
    node.data = toSumTree(node.left) +
                toSumTree(node.right);
 
    // Return the sum of values of nodes
    // in left and right subtrees old_value
    // of this node
    return node.data + old_val;
}
 
// A utility function to print
// inorder traversal of a Binary Tree
function printInorder(node)
{
    if (node == null)
    {
        return;
    }
    printInorder(node.left);
    document.write(node.data + " ");
    printInorder(node.right);
}
 
// Driver Code
 
/* Constructing tree given in
   the above figure */
root = new Node(10);
root.left = new Node(-2);
root.right = new Node(6);
root.left.left = new Node(8);
root.left.right = new Node(-4);
root.right.left = new Node(7);
root.right.right = new Node(5);
toSumTree(root);
// Print inorder traversal of the
// converted tree to test result of toSumTree()
document.write("Inorder Traversal of " +
                 "the resultant tree is:<br>");
printInorder(root);
 
 
</script>


Output

Inorder Traversal of the resultant tree is: 
 0 4 0 20 0 12 0

Time Complexity: The solution involves a simple traversal of the given tree. So the time complexity is O(n) where n is the number of nodes in the given Binary Tree.
Auxiliary Space : O(1) since using constant variables

Using postorder concept:

The idea is to use post order concept and store the value of left and right subtree and return it accordingly.

Steps to solve:

1. check if the root node is not equal to null:

  • declare l , r variable to recurse left and right.
  • declare temp variable to store to value of root data.
  • update the root data to l+r.
  • return temp+l+r.

2. Else return 0.

Implementation of the approach:

C++




// C++ program to convert a tree into its sum tree
#include <bits/stdc++.h>
using namespace std;
 
/* A tree node structure */
class node {
public:
    int data;
    node* left;
    node* right;
};
 
// Convert a given tree to a tree where
// every node contains sum of values of
// nodes in left and right subtrees in the original tree
int toSumTree(node* Node)
{
  //check for the base condition
    if (Node != NULL) {
      //recurse the left subtree
        int l = toSumTree(Node->left);
      //recurse the right subtree
        int r = toSumTree(Node->right);
      //storing the temp value of root value
        int temp = Node->data;
      //update the root node
        Node->data = l + r;
      //return the recurse value
        return temp + l + r;
    }
    else
        return 0;
}
 
// A utility function to print
// inorder traversal of a Binary Tree
void printInorder(node* Node)
{
    if (Node == NULL)
        return;
    printInorder(Node->left);
    cout << " " << Node->data;
    printInorder(Node->right);
}
 
/* Utility function to create a new Binary Tree node */
node* newNode(int data)
{
    node* temp = new node;
    temp->data = data;
    temp->left = NULL;
    temp->right = NULL;
 
    return temp;
}
 
/* Driver code */
int main()
{
    node* root = NULL;
    int x;
 
    /* Constructing tree given in the above figure */
    root = newNode(10);
    root->left = newNode(-2);
    root->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right = newNode(-4);
    root->right->left = newNode(7);
    root->right->right = newNode(5);
 
    toSumTree(root);
 
    // Print inorder traversal of the converted
    // tree to test result of toSumTree()
    cout
        << "Inorder Traversal of the resultant tree is: \n";
    printInorder(root);
    return 0;
}
 
// This code is contributed by Prateek Kumar Singh


Java




/*package whatever //do not write package name here */
 
import java.io.*;
import java.util.*;
// Define structure of your node
class Node {
    int data;
    Node left, right;
   Node(int item)    {
        data = item;
        left = right = null;
 }
}
class GFG {
//Convert a given tree to its Sum Tree
 
public static int toSumTree(Node root)
{
     
     if (root != null) {
      // Traverse left subtree
        int l = toSumTree(root.left);
      // Traverse right subtree
        int r = toSumTree(root.right);
      //storing the root value in temp node
        int temp = root.data;
      // Now update the root node
        root.data = l + r;
      //return the recurse value
        return temp + l + r;
    }
    else
        return 0;
}
 // Function to print inorder traversal of binary tree
public static void printInorder(Node root)
{
    if (root == null)
        return;
    printInorder(root.left);
    System.out.println(root.data);
    printInorder(root.right);
}
 
// Function to create new binary tree
public static Node newNode(int data)
{
    Node temp = new Node(data);
    temp.data = data;
    temp.left = null;
    temp.right = null;
  
    return temp;
}
               
 
 
    public static void main (String[] args) {
    Node root = null;
    int x;
      
    //Constructing tree given in the above figure
    root = newNode(10);
    root.left = newNode(-2);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(-4);
    root.right.left = newNode(7);
    root.right.right = newNode(5);
    // calling function to convert tree to sum tree
    toSumTree(root);
    // print inorder traversal of tree
    System.out.println("Inorder Traversal of the resultant tree is: \n");
    printInorder(root);
     
    }
}


C#




// C# program to convert a tree into its sum tree
using System;
using System.Collections.Generic;
 
class GFG
{
 
  /* A tree node structure */
  class node {
    public int data;
    public node left;
    public node right;
    public node(int data)
    {
      this.data=data;
      this.left=null;
      this.right=null;
    }
  }
 
  // Convert a given tree to a tree where
  // every node contains sum of values of
  // nodes in left and right subtrees in the original tree
  static int toSumTree(node Node)
  {
    //check for the base condition
    if (Node != null) {
      //recurse the left subtree
      int l = toSumTree(Node.left);
      //recurse the right subtree
      int r = toSumTree(Node.right);
      //storing the temp value of root value
      int temp = Node.data;
      //update the root node
      Node.data = l + r;
      //return the recurse value
      return temp + l + r;
    }
    else
      return 0;
  }
 
  // A utility function to print
  // inorder traversal of a Binary Tree
  static void printInorder(node Node)
  {
    if (Node == null)
      return;
    printInorder(Node.left);
    Console.Write(" " + Node.data);
    printInorder(Node.right);
  }
 
  /* Driver code */
  static void Main(string[] args)
  {
    node root = null;
    int x;
 
    /* Constructing tree given in the above figure */
    root = new node(10);
    root.left = new node(-2);
    root.right = new node(6);root.left.left = new node(8);
    root.left.right = new node(-4);
    root.right.left = new node(7);
    root.right.right = new node(5);
 
    toSumTree(root);
 
    // Print inorder traversal of the converted
    // tree to test result of toSumTree()
    Console.Write("Inorder Traversal of the resultant tree is: \n");
    printInorder(root);
  }
}


Javascript




// JS program to convert a tree into its sum tree
 
/* A tree node structure */
class Node
{
    constructor(data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
 
};
 
// Convert a given tree to a tree where
// every node contains sum of values of
// nodes in left and right subtrees in the original tree
function toSumTree( Node)
{
  // check for the base condition
    if (Node != null)
    {
     
      // recurse the left subtree
        let l = toSumTree(Node.left);
      // recurse the right subtree
        let r = toSumTree(Node.right);
      // storing the temp value of root value
        let temp = Node.data;
      // update the root node
        Node.data = l + r;
      // return the recurse value
        return temp + l + r;
    }
    else
        return 0;
}
 
// A utility function to print
// inorder traversal of a Binary Tree
function printInorder(Node)
{
    if (Node == null)
        return;
    printInorder(Node.left);
    console.log(" " + Node.data);
    printInorder(Node.right);
}
 
/* Driver code */
let x;
 
/* Constructing tree given in the above figure */
let root = new Node(10);
root.left = new Node(-2);
root.right = new Node(6);
root.left.left = new Node(8);
root.left.right = new Node(-4);
root.right.left = new Node(7);
root.right.right = new Node(5);
 
toSumTree(root);
 
// Print inorder traversal of the converted
// tree to test result of toSumTree()
console.log("Inorder Traversal of the resultant tree is: <br>");
printInorder(root);


Python3




# Python3 program to convert a tree
# into its sum tree
 
# Node definition
class node:
     
    def __init__(self, data):
        self.left = None
        self.right = None
        self.data = data
 
# Convert a given tree to a tree where
# every node contains sum of values of
# nodes in left and right subtrees
# in the original tree
def toSumTree(Node) :
     
    # Base case
    if(Node == None) :
        return 0
 
    # Store the old value
    old_val = Node.data
 
    # Recursively call for left and
    # right subtrees and store the sum as
    # new value of this node
    Node.data = toSumTree(Node.left) + \
                toSumTree(Node.right)
 
    # Return the sum of values of nodes
    # in left and right subtrees and
    # old_value of this node
    return Node.data + old_val
 
# A utility function to print
# inorder traversal of a Binary Tree
def printInorder(Node) :
    if (Node == None) :
        return
    printInorder(Node.left)
    print(Node.data, end = " ")
    printInorder(Node.right)
     
# Utility function to create a new Binary Tree node
def newNode(data) :
    temp = node(0)
    temp.data = data
    temp.left = None
    temp.right = None
     
    return temp
 
# Driver Code
if __name__ == "__main__":
    root = None
    x = 0
     
    # Constructing tree given in the above figure
    root = newNode(10)
    root.left = newNode(-2)
    root.right = newNode(6)
    root.left.left = newNode(8)
    root.left.right = newNode(-4)
    root.right.left = newNode(7)
    root.right.right = newNode(5)
     
    toSumTree(root)
     
    # Print inorder traversal of the converted
    # tree to test result of toSumTree()
    print("Inorder Traversal of the resultant tree is: ")
    printInorder(root)
 
# This code is contributed by Arnab Kundu


Output

Inorder Traversal of the resultant tree is: 
 0 4 0 20 0 12 0

Time Complexity: O(n), where n is the number of nodes.
Auxiliary Space : O(1) since using constant variables

This approach is contributed by Prateek Kumar Singh (pkrsingh025).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments