Given an integer N, the task is to construct a binary matrix of size N * N such that the sum of each row and each column of the matrix is a prime number.
Examples:
Input: N = 2
Output:1 1 1 1Explanation:
Sum of 0th row = 1 + 1 = 2 (Prime number)
Sum of 1st row = 1 + 1 = 2 (Prime number)
Sum of 0th column = 1 + 1 = 2 (Prime number)
Sum of 1st column = 1 + 1 = 2 (Prime number)Input: N = 4
Output:1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Approach: Follow the steps below to solve the problem:
- Initialize a Binary matrix, say mat[][] of size N * N.
- Update all possible values of mat[i][i] to 1.
- Update all possible values of mat[i][N – i -1] to 1.
- If N is an odd number then update the value mat[N / 2][0] and mat[0][N / 2] to 1.
Below is the implementation of the above approach.
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to construct // the required binary matrix void constructBinaryMat( int N) { // Stores binary value with row // and column sum as prime number int mat[N][N]; // initialize the binary matrix mat[][] memset (mat, 0, sizeof (mat)); // Update all possible values of // mat[i][i] to 1 for ( int i = 0; i < N; i++) { mat[i][i] = 1; } // Update all possible values of // mat[i][N - i -1] for ( int i = 0; i < N; i++) { mat[i][N - i - 1] = 1; } // Check if N is an odd number if (N % 2 != 0) { // Update mat[N / 2][0] to 1 mat[N / 2][0] = 1; // Update mat[0][N / 2] to 1 mat[0][N / 2] = 1; } // Print required binary matrix for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { cout << mat[i][j] << " " ; } cout << endl; } } // Driver Code int main() { int N = 5; constructBinaryMat(N); return 0; } |
Java
// Java program to implement // the above approach class GFG{ // Function to construct // the required binary matrix static void constructBinaryMat( int N) { // Stores binary value with row // and column sum as prime number int mat[][] = new int [N][N]; // Update all possible values // of mat[i][i] to 1 for ( int i = 0 ; i < N; i++) { mat[i][i] = 1 ; } // Update all possible values // of mat[i][N - i -1] for ( int i = 0 ; i < N; i++) { mat[i][N - i - 1 ] = 1 ; } // Check if N is an odd // number if (N % 2 != 0 ) { // Update mat[N / 2][0] // to 1 mat[N / 2 ][ 0 ] = 1 ; // Update mat[0][N / 2] // to 1 mat[ 0 ][N / 2 ] = 1 ; } // Print required binary matrix for ( int i = 0 ; i < N; i++) { for ( int j = 0 ; j < N; j++) { System.out.print(mat[i][j] + " " ); } System.out.println(); } } // Driver Code public static void main(String[] args) { int N = 5 ; constructBinaryMat(N); } } // This code is contributed by Chitranayal |
Python3
# Python3 program to implement # the above approach # Function to construct # the required binary matrix def constructBinaryMat(N): # Stores binary value with row # and column sum as prime number mat = [[ 0 for i in range (N)] for i in range (N)] # Initialize the binary matrix mat[][] # memset(mat, 0, sizeof(mat)); # Update all possible values of # mat[i][i] to 1 for i in range (N): mat[i][i] = 1 # Update all possible values of # mat[i][N - i -1] for i in range (N): mat[i][N - i - 1 ] = 1 # Check if N is an odd number if (N % 2 ! = 0 ): # Update mat[N / 2][0] to 1 mat[N / / 2 ][ 0 ] = 1 # Update mat[0][N / 2] to 1 mat[ 0 ][N / / 2 ] = 1 # Print required binary matrix for i in range (N): for j in range (N): print (mat[i][j], end = " " ) print () # Driver Code if __name__ = = '__main__' : N = 5 constructBinaryMat(N) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; class GFG{ // Function to construct // the required binary matrix static void constructBinaryMat( int N) { // Stores binary value with row // and column sum as prime number int [,]mat = new int [N, N]; // Update all possible values // of mat[i,i] to 1 for ( int i = 0; i < N; i++) { mat[i, i] = 1; } // Update all possible values // of mat[i,N - i -1] for ( int i = 0; i < N; i++) { mat[i, N - i - 1] = 1; } // Check if N is an odd // number if (N % 2 != 0) { // Update mat[N / 2,0] // to 1 mat[N / 2, 0] = 1; // Update mat[0,N / 2] // to 1 mat[0, N / 2] = 1; } // Print required binary matrix for ( int i = 0; i < N; i++) { for ( int j = 0; j < N; j++) { Console.Write(mat[i, j] + " " ); } Console.WriteLine(); } } // Driver Code public static void Main(String[] args) { int N = 5; constructBinaryMat(N); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript program to implement // the above approach // Function to construct // the required binary matrix function constructBinaryMat(N) { // Stores binary value with row // and column sum as prime number var mat = Array.from(Array(N), () => Array(N).fill(0)); // Update all possible values of // mat[i][i] to 1 for ( var i = 0; i < N; i++) { mat[i][i] = 1; } // Update all possible values of // mat[i][N - i -1] for ( var i = 0; i < N; i++) { mat[i][N - i - 1] = 1; } // Check if N is an odd number if (N % 2 != 0) { // Update mat[N / 2][0] to 1 mat[parseInt(N / 2)][0] = 1; // Update mat[0][N / 2] to 1 mat[0][parseInt(N / 2)] = 1; } // Print required binary matrix for ( var i = 0; i < N; i++) { for ( var j = 0; j < N; j++) { document.write( mat[i][j] + " " ); } document.write( "<br>" ); } } // Driver Code var N = 5; constructBinaryMat(N); // This code is contributed by rutvik_56 </script> |
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!