Monday, January 13, 2025
Google search engine
HomeData Modelling & AIConstruct a Binary Matrix whose sum of each row and column is...

Construct a Binary Matrix whose sum of each row and column is a Prime Number

Given an integer N, the task is to construct a binary matrix of size N * N such that the sum of each row and each column of the matrix is a prime number.

Examples:

Input: N = 2 
Output: 

1 1
1 1

Explanation: 
Sum of 0th row = 1 + 1 = 2 (Prime number) 
Sum of 1st row = 1 + 1 = 2 (Prime number) 
Sum of 0th column = 1 + 1 = 2 (Prime number) 
Sum of 1st column = 1 + 1 = 2 (Prime number)

Input: N = 4 
Output: 

1 0 0 1 
0 1 1 0 
0 1 1 0 
1 0 0 1 

Approach: Follow the steps below to solve the problem:

  • Initialize a Binary matrix, say mat[][] of size N * N.
  • Update all possible values of mat[i][i] to 1.
  • Update all possible values of mat[i][N – i -1] to 1.
  • If N is an odd number then update the value mat[N / 2][0] and mat[0][N / 2] to 1.

Below is the implementation of the above approach.

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to construct
// the required binary matrix
void constructBinaryMat(int N)
{
    // Stores binary value with row
    // and column sum as prime number
    int mat[N][N];
 
    // initialize the binary matrix mat[][]
    memset(mat, 0, sizeof(mat));
 
    // Update all possible values of
    // mat[i][i] to 1
    for (int i = 0; i < N; i++) {
        mat[i][i] = 1;
    }
 
    // Update all possible values of
    // mat[i][N - i -1]
    for (int i = 0; i < N; i++) {
        mat[i][N - i - 1] = 1;
    }
 
    // Check if N is an odd number
    if (N % 2 != 0) {
 
        // Update mat[N / 2][0] to 1
        mat[N / 2][0] = 1;
 
        // Update mat[0][N / 2] to 1
        mat[0][N / 2] = 1;
    }
 
    // Print required binary matrix
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            cout << mat[i][j] << " ";
        }
        cout << endl;
    }
}
 
// Driver Code
int main()
{
    int N = 5;
 
    constructBinaryMat(N);
 
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
 
// Function to construct
// the required binary matrix
static void constructBinaryMat(int N)
{
  // Stores binary value with row
  // and column sum as prime number
  int mat[][] = new int[N][N];
 
  // Update all possible values
  // of mat[i][i] to 1
  for (int i = 0; i < N; i++)
  {
    mat[i][i] = 1;
  }
 
  // Update all possible values
  // of mat[i][N - i -1]
  for (int i = 0; i < N; i++)
  {
    mat[i][N - i - 1] = 1;
  }
 
  // Check if N is an odd
  // number
  if (N % 2 != 0)
  {
    // Update mat[N / 2][0]
    // to 1
    mat[N / 2][0] = 1;
 
    // Update mat[0][N / 2]
    // to 1
    mat[0][N / 2] = 1;
  }
 
  // Print required binary matrix
  for (int i = 0; i < N; i++)
  {
    for (int j = 0; j < N; j++)
    {
      System.out.print(mat[i][j] + " ");
    }
    System.out.println();
  }
}
 
// Driver Code
public static void main(String[] args)
{
  int N = 5;
  constructBinaryMat(N);
}
}
 
// This code is contributed by Chitranayal


Python3




# Python3 program to implement
# the above approach
 
# Function to construct
# the required binary matrix
def constructBinaryMat(N):
     
    # Stores binary value with row
    # and column sum as prime number
    mat = [[0 for i in range(N)]
              for i in range(N)]
 
    # Initialize the binary matrix mat[][]
    # memset(mat, 0, sizeof(mat));
 
    # Update all possible values of
    # mat[i][i] to 1
    for i in range(N):
        mat[i][i] = 1
 
    # Update all possible values of
    # mat[i][N - i -1]
    for i in range(N):
        mat[i][N - i - 1] = 1
 
    # Check if N is an odd number
    if (N % 2 != 0):
         
        # Update mat[N / 2][0] to 1
        mat[N // 2][0] = 1
 
        # Update mat[0][N / 2] to 1
        mat[0][N // 2] = 1
 
    # Print required binary matrix
    for i in range(N):
        for j in range(N):
            print(mat[i][j], end = " ")
             
        print()
 
# Driver Code
if __name__ == '__main__':
     
    N = 5
 
    constructBinaryMat(N)
     
# This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach
using System;
class GFG{
 
// Function to construct
// the required binary matrix
static void constructBinaryMat(int N)
{
  // Stores binary value with row
  // and column sum as prime number
  int [,]mat = new int[N, N];
 
  // Update all possible values
  // of mat[i,i] to 1
  for (int i = 0; i < N; i++)
  {
    mat[i, i] = 1;
  }
 
  // Update all possible values
  // of mat[i,N - i -1]
  for (int i = 0; i < N; i++)
  {
    mat[i, N - i - 1] = 1;
  }
 
  // Check if N is an odd
  // number
  if (N % 2 != 0)
  {
    // Update mat[N / 2,0]
    // to 1
    mat[N / 2, 0] = 1;
 
    // Update mat[0,N / 2]
    // to 1
    mat[0, N / 2] = 1;
  }
 
  // Print required binary matrix
  for (int i = 0; i < N; i++)
  {
    for (int j = 0; j < N; j++)
    {
      Console.Write(mat[i, j] + " ");
    }
    Console.WriteLine();
  }
}
 
// Driver Code
public static void Main(String[] args)
{
  int N = 5;
  constructBinaryMat(N);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
    
// Javascript program to implement
// the above approach
 
// Function to construct
// the required binary matrix
function constructBinaryMat(N)
{
     
    // Stores binary value with row
    // and column sum as prime number
    var mat = Array.from(Array(N), () =>
                         Array(N).fill(0));
 
    // Update all possible values of
    // mat[i][i] to 1
    for(var i = 0; i < N; i++)
    {
        mat[i][i] = 1;
    }
 
    // Update all possible values of
    // mat[i][N - i -1]
    for(var i = 0; i < N; i++)
    {
        mat[i][N - i - 1] = 1;
    }
 
    // Check if N is an odd number
    if (N % 2 != 0)
    {
         
        // Update mat[N / 2][0] to 1
        mat[parseInt(N / 2)][0] = 1;
 
        // Update mat[0][N / 2] to 1
        mat[0][parseInt(N / 2)] = 1;
    }
 
    // Print required binary matrix
    for(var i = 0; i < N; i++)
    {
        for(var j = 0; j < N; j++)
        {
            document.write( mat[i][j] + " ");
        }
        document.write("<br>");
    }
}
 
// Driver Code
var N = 5;
 
constructBinaryMat(N);
 
// This code is contributed by rutvik_56
 
</script>


Output: 

1 0 1 0 1 
0 1 0 1 0 
1 0 1 0 0 
0 1 0 1 0 
1 0 0 0 1

 

Time Complexity: O(N2)
Auxiliary Space: O(N2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments