Parity of a number refers to whether it contains an odd or even number of 1-bits. The number has “odd parity”, if it contains odd number of 1-bits and is “even parity” if it contains even number of 1-bits.
1 --> parity of the set is odd 0 --> parity of the set is even
Examples:
Input : 254 Output : Odd Parity Explanation : Binary of 254 is 11111110. There are 7 ones. Thus, parity is odd. Input : 1742346774 Output : Even
Method 1 : (Naive approach) We have already discussed this method here. Method 2 : (Efficient) Pre-requisites : Table look up, X-OR magic If we break a number S into two parts S1 and S2 such S = S1S2. If we know parity of S1 and S2, we can compute parity of S using below facts :
- If S1 and S2 have the same parity, i.e. they both have an even number of bits or an odd number of bits, their union S will have an even number of bits.
- Therefore parity of S is XOR of parities of S1 and S2
The idea is to create a look up table to store parities of all 8 bit numbers. Then compute parity of whole number by dividing it into 8 bit numbers and using above facts. Steps:
1. Create a look-up table for 8-bit numbers ( 0 to 255 ) Parity of 0 is 0. Parity of 1 is 1. . . . Parity of 255 is 0. 2. Break the number into 8-bit chunks while performing XOR operations. 3. Check for the result in the table for the 8-bit number.
Since a 32 bit or 64 bit number contains constant number of bytes, the above steps take O(1) time. Example :
1. Take 32-bit number : 1742346774 2. Calculate Binary of the number : 01100111110110100001101000010110 3. Split the 32-bit binary representation into 16-bit chunks : 0110011111011010 | 0001101000010110 4. Compute X-OR : 0110011111011010 ^ 0001101000010110 ___________________ = 0111110111001100 5. Split the 16-bit binary representation into 8-bit chunks : 01111101 | 11001100 6. Again, Compute X-OR : 01111101 ^ 11001100 ___________________ = 10110001 10110001 is 177 in decimal. Check for its parity in look-up table : Even number of 1 = Even parity. Thus, Parity of 1742346774 is even.
Below is the implementation that works for both 32 bit and 64 bit numbers.
C++
// CPP program to illustrate Compute the parity of a // number using XOR #include <bits/stdc++.h> // Generating the look-up table while pre-processing #define P2(n) n, n ^ 1, n ^ 1, n #define P4(n) P2(n), P2(n ^ 1), P2(n ^ 1), P2(n) #define P6(n) P4(n), P4(n ^ 1), P4(n ^ 1), P4(n) #define LOOK_UP P6(0), P6(1), P6(1), P6(0) // LOOK_UP is the macro expansion to generate the table unsigned int table[256] = { LOOK_UP }; // Function to find the parity int Parity( int num) { // Number is considered to be of 32 bits int max = 16; // Dividing the number into 8-bit // chunks while performing X-OR while (max >= 8) { num = num ^ (num >> max); max = max / 2; } // Masking the number with 0xff (11111111) // to produce valid 8-bit result return table[num & 0xff]; } // Driver code int main() { unsigned int num = 1742346774; // Result is 1 for odd parity, 0 for even parity bool result = Parity(num); // Printing the desired result result ? std::cout << "Odd Parity" : std::cout << "Even Parity" ; return 0; } |
Java
// Java program to illustrate Compute the // parity of a number using XOR import java.util.ArrayList; class GFG { // LOOK_UP is the macro expansion to // generate the table static ArrayList<Integer> table = new ArrayList<Integer>(); // Generating the look-up table while // pre-processing static void P2( int n) { table.add(n); table.add(n ^ 1 ); table.add(n ^ 1 ); table.add(n); } static void P4( int n) { P2(n); P2(n ^ 1 ); P2(n ^ 1 ); P2(n); } static void P6( int n) { P4(n); P4(n ^ 1 ); P4(n ^ 1 ); P4(n) ; } static void LOOK_UP() { P6( 0 ); P6( 1 ); P6( 1 ); P6( 0 ); } // Function to find the parity static int Parity( int num) { // Number is considered to be // of 32 bits int max = 16 ; // Dividing the number o 8-bit // chunks while performing X-OR while (max >= 8 ) { num = num ^ (num >> max); max = (max / 2 ); } // Masking the number with 0xff (11111111) // to produce valid 8-bit result return table.get(num & 0xff ); } public static void main(String[] args) { // Driver code int num = 1742346774 ; LOOK_UP(); //Function call int result = Parity(num); // Result is 1 for odd parity, // 0 for even parity if (result != 0 ) System.out.println( "Odd Parity" ); else System.out.println( "Even Parity" ); } } //This code is contributed by phasing17 |
Python3
# Python3 program to illustrate Compute the # parity of a number using XOR # Generating the look-up table while # pre-processing def P2(n, table): table.extend([n, n ^ 1 , n ^ 1 , n]) def P4(n, table): return (P2(n, table), P2(n ^ 1 , table), P2(n ^ 1 , table), P2(n, table)) def P6(n, table): return (P4(n, table), P4(n ^ 1 , table), P4(n ^ 1 , table), P4(n, table)) def LOOK_UP(table): return (P6( 0 , table), P6( 1 , table), P6( 1 , table), P6( 0 , table)) # LOOK_UP is the macro expansion to # generate the table table = [ 0 ] * 256 LOOK_UP(table) # Function to find the parity def Parity(num) : # Number is considered to be # of 32 bits max = 16 # Dividing the number o 8-bit # chunks while performing X-OR while ( max > = 8 ): num = num ^ (num >> max ) max = max / / 2 # Masking the number with 0xff (11111111) # to produce valid 8-bit result return table[num & 0xff ] # Driver code if __name__ = = "__main__" : num = 1742346774 # Result is 1 for odd parity, # 0 for even parity result = Parity(num) print ( "Odd Parity" ) if result else print ( "Even Parity" ) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10) |
C#
// C# program to illustrate Compute the // parity of a number using XOR using System; using System.Collections.Generic; class GFG { // LOOK_UP is the macro expansion to // generate the table static List< int > table = new List< int >(); // Generating the look-up table while // pre-processing static void P2( int n) { table.Add(n); table.Add(n ^ 1); table.Add(n ^ 1); table.Add(n); } static void P4( int n) { P2(n); P2(n ^ 1); P2(n ^ 1); P2(n); } static void P6( int n) { P4(n); P4(n ^ 1); P4(n ^ 1); P4(n); } static void LOOK_UP() { P6(0); P6(1); P6(1); P6(0); } // Function to find the parity static int Parity( int num) { // Number is considered to be // of 32 bits int max = 16; // Dividing the number o 8-bit // chunks while performing X-OR while (max >= 8) { num = num ^ (num >> max); max = (max / 2); } // Masking the number with 0xff (11111111) // to produce valid 8-bit result return table[num & 0xff]; } public static void Main( string [] args) { // Driver code int num = 1742346774; LOOK_UP(); // Function call int result = Parity(num); // Result is 1 for odd parity, // 0 for even parity if (result != 0) Console.WriteLine( "Odd Parity" ); else Console.WriteLine( "Even Parity" ); } } // This code is contributed by phasing17 |
PHP
<?php // PHP program to illustrate // Compute the parity of a // number using XOR /* Generating the look-up table while pre-processing #define P2(n) n, n ^ 1, n ^ 1, n #define P4(n) P2(n), P2(n ^ 1), P2(n ^ 1), P2(n) #define P6(n) P4(n), P4(n ^ 1), P4(n ^ 1), P4(n) #define LOOK_UP P6(0), P6(1), P6(1), P6(0) LOOK_UP is the macro expansion to generate the table $table = array(LOOK_UP ); */ // Function to find // the parity function Parity( $num ) { global $table ; // Number is considered // to be of 32 bits $max = 16; // Dividing the number // into 8-bit chunks // while performing X-OR while ( $max >= 8) { $num = $num ^ ( $num >> $max ); $max = (int) $max / 2; } // Masking the number with // 0xff (11111111) to produce // valid 8-bit result return $table [ $num & 0xff]; } // Driver code $num = 1742346774; // Result is 1 for odd // parity, 0 for even parity $result = Parity( $num ); // Printing the desired result if ( $result == true) echo "Odd Parity" ; else echo "Even Parity" ; // This code is contributed by ajit ?> |
Javascript
//JavaScript program to illustrate Compute the // parity of a number using XOR // Generating the look-up table while // pre-processing function P2(n, table) { table.push(n, n ^ 1, n ^ 1, n); } function P4(n, table) { return (P2(n, table), P2(n ^ 1, table), P2(n ^ 1, table), P2(n, table)); } function P6(n, table) { return (P4(n, table), P4(n ^ 1, table), P4(n ^ 1, table), P4(n, table)) ; } function LOOK_UP(table) { return (P6(0, table), P6(1, table), P6(1, table), P6(0, table)); } // LOOK_UP is the macro expansion to // generate the table var table = new Array(256).fill(0); LOOK_UP(table); // Function to find the parity function Parity(num) { // Number is considered to be // of 32 bits var max = 16; // Dividing the number o 8-bit // chunks while performing X-OR while (max >= 8) { num = num ^ (num >> max); max = Math.floor(max / 2); } // Masking the number with 0xff (11111111) // to produce valid 8-bit result return table[num & 0xff] ; } // Driver code var num = 1742346774; //Function call var result = Parity(num); // Result is 1 for odd parity, // 0 for even parity console.log(result ? "Odd Parity" : "Even Parity" ); // This code is contributed by phasing17 |
Output:
Even Parity
Time Complexity : O(1). Note that a 32 bit or 64 bit number has fixed number of bytes (4 in case of 32 bits and 8 in case of 64 bits).
Auxiliary Space: O(1)
This article is contributed by Rohit Thapliyal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.