Thursday, December 26, 2024
Google search engine
HomeLanguagesJavaCompute the minimum or maximum of two integers without branching

Compute the minimum or maximum of two integers without branching

On some rare machines where branching is expensive, the below obvious approach to find minimum can be slow as it uses branching.

C++




/* The obvious approach to find minimum (involves branching) */
int min(int x, int y)
{
  return (x < y) ? x : y
}
 
//This code is contributed by Shubham Singh


Java




/* The obvious approach to find minimum (involves branching) */
static int min(int x, int y)
{
  return (x < y) ? x : y;
}
 
// This code is contributed by rishavmahato348.


Python3




# The obvious approach to find minimum (involves branching)
def min(x, y):
    return x if x < y else y
 
  # This code is contributed by subham348.


C#




/* The obvious approach to find minimum (involves branching) */
static int min(int x, int y)
{
  return (x < y) ? x : y;
}
 
// This code is contributed by rishavmahato348.


Javascript




<script>
 
/* The obvious approach to find minimum (involves branching) */
function min(x, y)
{
  return (x < y) ? x : y;
}
 
// This code is contributed by subham348.
</script>


C




/* The obvious approach to find minimum (involves branching) */
int min(int x, int y)
{
  return (x < y) ? x : y
}


Below are the methods to get minimum(or maximum) without using branching. Typically, the obvious approach is best, though.

Method 1(Use XOR and comparison operator)
Minimum of x and y will be 

y ^ ((x ^ y) & -(x < y))

It works because if x < y, then -(x < y) will be -1 which is all ones(11111….), so r = y ^ ((x ^ y) & (111111…)) = y ^ x ^ y = x. 

And if x>y, then-(x<y) will be -(0) i.e -(zero) which is zero, so r = y^((x^y) & 0) = y^0 = y.

On some machines, evaluating (x < y) as 0 or 1 requires a branch instruction, so there may be no advantage.
To find the maximum, use 

x ^ ((x ^ y) & -(x < y));

C++




// C++ program to Compute the minimum
// or maximum of two integers without
// branching
#include<iostream>
using namespace std;
 
class gfg
{
     
    /*Function to find minimum of x and y*/
    public:
    int min(int x, int y)
    {
        return y ^ ((x ^ y) & -(x < y));
    }
 
    /*Function to find maximum of x and y*/
    int max(int x, int y)
    {
        return x ^ ((x ^ y) & -(x < y));
    }
    };
     
    /* Driver code */
    int main()
    {
        gfg g;
        int x = 15;
        int y = 6;
        cout << "Minimum of " << x <<
             " and " << y << " is ";
        cout << g. min(x, y);
        cout << "\nMaximum of " << x <<
                " and " << y << " is ";
        cout << g.max(x, y);
        getchar();
    }
 
// This code is contributed by SoM15242


Java




// Java program to Compute the minimum
// or maximum of two integers without
// branching
public class AWS {
 
    /*Function to find minimum of x and y*/
    static int min(int x, int y)
    {
    return y ^ ((x ^ y) & -(x << y));
    }
     
    /*Function to find maximum of x and y*/
    static int max(int x, int y)
    {
    return x ^ ((x ^ y) & -(x << y));
    }
     
    /* Driver program to test above functions */
    public static void main(String[] args) {
         
        int x = 15;
        int y = 6;
        System.out.print("Minimum of "+x+" and "+y+" is ");
        System.out.println(min(x, y));
        System.out.print("Maximum of "+x+" and "+y+" is ");
        System.out.println( max(x, y));
    }
 
}


Python3




# Python3 program to Compute the minimum
# or maximum of two integers without
# branching
 
# Function to find minimum of x and y
 
def min(x, y):
 
    return y ^ ((x ^ y) & -(x < y))
 
 
# Function to find maximum of x and y
def max(x, y):
 
    return x ^ ((x ^ y) & -(x < y))
 
 
# Driver program to test above functions
x = 15
y = 6
print("Minimum of", x, "and", y, "is", end=" ")
print(min(x, y))
print("Maximum of", x, "and", y, "is", end=" ")
print(max(x, y))
 
# This code is contributed
# by Smitha Dinesh Semwal


C#




using System;
 
// C# program to Compute the minimum
// or maximum of two integers without 
// branching
public class AWS
{
 
    /*Function to find minimum of x and y*/
    public  static int min(int x, int y)
    {
    return y ^ ((x ^ y) & -(x << y));
    }
 
    /*Function to find maximum of x and y*/
    public  static int max(int x, int y)
    {
    return x ^ ((x ^ y) & -(x << y));
    }
 
    /* Driver program to test above functions */
    public static void Main(string[] args)
    {
 
        int x = 15;
        int y = 6;
        Console.Write("Minimum of " + x + " and " + y + " is ");
        Console.WriteLine(min(x, y));
        Console.Write("Maximum of " + x + " and " + y + " is ");
        Console.WriteLine(max(x, y));
    }
 
}
 
  // This code is contributed by Shrikant13


Javascript




<script>
// Javascript program to Compute the minimum
// or maximum of two integers without
// branching
 
    /*Function to find minimum of x and y*/
    function min(x,y)
    {
        return y ^ ((x ^ y) & -(x << y));
    }
     
    /*Function to find maximum of x and y*/
    function max(x,y)
    {
        return x ^ ((x ^ y) & -(x << y));
    }
     
    /* Driver program to test above functions */
    let x = 15
    let y = 6
    document.write("Minimum of  "+ x + " and " + y + " is ");
    document.write(min(x, y) + "<br>");
    document.write("Maximum of " + x + " and " + y + " is ");
    document.write(max(x, y) + "\n");
     
    // This code is contributed by avanitrachhadiya2155
</script>


C




// C program to Compute the minimum
// or maximum of two integers without
// branching
#include<stdio.h>
 
/*Function to find minimum of x and y*/
int min(int x, int y)
{
return y ^ ((x ^ y) & -(x < y));
}
 
/*Function to find maximum of x and y*/
int max(int x, int y)
{
return x ^ ((x ^ y) & -(x < y));
}
 
/* Driver program to test above functions */
int main()
{
int x = 15;
int y = 6;
printf("Minimum of %d and %d is ", x, y);
printf("%d", min(x, y));
printf("\nMaximum of %d and %d is ", x, y);
printf("%d", max(x, y));
getchar();
}


PHP




<?php
// PHP program to Compute the minimum
// or maximum of two integers without
// branching
 
// Function to find minimum
// of x and y
function m_in($x, $y)
{
    return $y ^ (($x ^ $y) &
            - ($x < $y));
}
 
// Function to find maximum
// of x and y
function m_ax($x, $y)
{
    return $x ^ (($x ^ $y) &
            - ($x < $y));
}
 
// Driver Code
$x = 15;
$y = 6;
echo"Minimum of"," ", $x," ","and",
    " ",$y," "," is "," ";
     
echo m_in($x, $y);
 
echo "\nMaximum of"," ",$x," ",
    "and"," ",$y," ", " is ";
     
echo m_ax($x, $y);
 
// This code is contributed by anuj_67.
?>


Output

Minimum of 15 and 6 is 6
Maximum of 15 and 6 is 15

Time Complexity: O(1)
Auxiliary Space: O(1)

Method 2(Use subtraction and shift) 
If we know that 

INT_MIN <= (x - y) <= INT_MAX

, then we can use the following, which are faster because (x – y) only needs to be evaluated once. 
Minimum of x and y will be 

y + ((x - y) & ((x - y) >>(sizeof(int) * CHAR_BIT - 1)))

This method shifts the subtraction of x and y by 31 (if size of integer is 32). If (x-y) is smaller than 0, then (x -y)>>31 will be 1. If (x-y) is greater than or equal to 0, then (x -y)>>31 will be 0. 
So if x >= y, we get minimum as y + (x-y)&0 which is y. 
If x < y, we get minimum as y + (x-y)&1 which is x.
Similarly, to find the maximum use 

x - ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)))

C++




#include <bits/stdc++.h>
using namespace std;
#define CHARBIT 8
 
/*Function to find minimum of x and y*/
int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >>
            (sizeof(int) * CHARBIT - 1)));
}
 
/*Function to find maximum of x and y*/
int max(int x, int y)
{
    return x - ((x - y) & ((x - y) >>
            (sizeof(int) * CHARBIT - 1)));
}
 
/* Driver code */
int main()
{
    int x = 15;
    int y = 6;
    cout<<"Minimum of "<<x<<" and "<<y<<" is ";
    cout<<min(x, y);
    cout<<"\nMaximum of"<<x<<" and "<<y<<" is ";
    cout<<max(x, y);
}
 
// This code is contributed by rathbhupendra


Java




// JAVA implementation of above approach
class GFG
{
     
static int CHAR_BIT = 4;
static int INT_BIT = 8;
/*Function to find minimum of x and y*/
static int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >>
                (INT_BIT * CHAR_BIT - 1)));
}
 
/*Function to find maximum of x and y*/
static int max(int x, int y)
{
    return x - ((x - y) & ((x - y) >>
            (INT_BIT * CHAR_BIT - 1)));
}
 
/* Driver code */
public static void main(String[] args)
{
    int x = 15;
    int y = 6;
    System.out.println("Minimum of "+x+" and "+y+" is "+min(x, y));
    System.out.println("Maximum of "+x+" and "+y+" is "+max(x, y));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
import sys;
     
CHAR_BIT = 8;
INT_BIT = sys.getsizeof(int());
 
#Function to find minimum of x and y
def Min(x, y):
    return y + ((x - y) & ((x - y) >>
                (INT_BIT * CHAR_BIT - 1)));
 
#Function to find maximum of x and y
def Max(x, y):
    return x - ((x - y) & ((x - y) >>
                (INT_BIT * CHAR_BIT - 1)));
 
# Driver code
x = 15;
y = 6;
print("Minimum of", x, "and",
                    y, "is", Min(x, y));
print("Maximum of", x, "and",
                    y, "is", Max(x, y));
 
# This code is contributed by PrinciRaj1992


C#




// C# implementation of above approach
using System;
 
class GFG
{
     
static int CHAR_BIT = 8;
 
/*Function to find minimum of x and y*/
static int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >>
                (sizeof(int) * CHAR_BIT - 1)));
}
 
/*Function to find maximum of x and y*/
static int max(int x, int y)
{
    return x - ((x - y) & ((x - y) >>
            (sizeof(int) * CHAR_BIT - 1)));
}
 
/* Driver code */
static void Main()
{
    int x = 15;
    int y = 6;
    Console.WriteLine("Minimum of "+x+" and "+y+" is "+min(x, y));
    Console.WriteLine("Maximum of "+x+" and "+y+" is "+max(x, y));
}
}
 
// This code is contributed by mits


Javascript




<script>
// javascript implementation of above approach   
var CHAR_BIT = 4;
    var INT_BIT = 8;
 
    /* Function to find minimum of x and y */
    function min(x , y) {
        return y + ((x - y) & ((x - y) >> (INT_BIT * CHAR_BIT - 1)));
    }
 
    /* Function to find maximum of x and y */
    function max(x , y) {
        return x - ((x - y) & ((x - y) >> (INT_BIT * CHAR_BIT - 1)));
    }
 
    /* Driver code */
        var x = 15;
        var y = 6;
        document.write("Minimum of " + x + " and " + y + " is " + min(x, y)+"<br/>");
        document.write("Maximum of " + x + " and " + y + " is " + max(x, y));
 
// This code is contributed by shikhasingrajput
</script>


C




#include<stdio.h>
#define CHAR_BIT 8
 
/*Function to find minimum of x and y*/
int min(int x, int y)
{
  return  y + ((x - y) & ((x - y) >>
            (sizeof(int) * CHAR_BIT - 1)));
}
 
/*Function to find maximum of x and y*/
int max(int x, int y)
{
  return x - ((x - y) & ((x - y) >>
            (sizeof(int) * CHAR_BIT - 1)));
}
 
/* Driver program to test above functions */
int main()
{
  int x = 15;
  int y = 6;
  printf("Minimum of %d and %d is ", x, y);
  printf("%d", min(x, y));
  printf("\nMaximum of %d and %d is ", x, y);
  printf("%d", max(x, y));
  getchar();
}


Output

Minimum of 15 and 6 is 6
Maximum of15 and 6 is 15

Time Complexity: O(1)
Auxiliary Space: O(1)

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments