Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICompute power of power k times % m

Compute power of power k times % m

Given x, k and m. Compute (xxxx…k)%m, x is in power k times. Given x is always prime and m is greater than x. 

Examples: 

Input : 2 3 3
Output : 1
Explanation : ((2 ^ 2) ^ 2) % 3 
           = (4 ^ 2) % 3 
           = 1

Input : 3 2 3
Output : 0
Explanation : (3^3)%3 = 0

A naive approach is to compute the power of x k times and do modulus operation every time.  

C++




// C++ program for computing
// x^x^x^x.. %m
#include <bits/stdc++.h>
using namespace std;
 
// Function to compute the given value
int calculate(int x, int k, int m)
{
    int result = x;
    k--;
 
    // compute power k times
    while (k--) {
        result = pow(result, x);
 
        if (result > m)
            result %= m;
    }
 
    return result;
}
 
// Driver Code
int main()
{
    int x = 5, k = 2, m = 3;
 
    // Calling function
    cout << calculate(x, k, m);
 
    return 0;
}


C




// C program for computing
// x^x^x^x.. %m
#include <stdio.h>
#include <math.h>
 
// Function to compute the given value
int calculate(int x, int k, int m)
{
    int result = x;
    k--;
 
    // compute power k times
    while (k--) {
        result = pow(result, x);
 
        if (result > m)
            result %= m;
    }
 
    return result;
}
 
// Driver Code
int main()
{
    int x = 5, k = 2, m = 3;
 
    // Calling function
    printf("%d",calculate(x, k, m));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash.


Java




// Java program for computing
// x^x^x^x.. %m
class GFG
{
 
// Function to compute
// the given value
static int calculate(int x,
                     int k, int m)
{
    int result = x;
    k--;
 
    // compute power k times
    while (k --> 0)
    {
        result = (int)Math.pow(result, x);
 
        if (result > m)
            result %= m;
    }
 
    return result;
}
 
// Driver Code
public static void main(String args[])
{
    int x = 5, k = 2, m = 3;
 
    // Calling function
    System.out.println( calculate(x, k, m));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 program for
# computing x^x^x^x.. %m
import math
 
# Function to compute
# the given value
def calculate(x, k, m):
    result = x;
    k = k - 1;
     
    # compute power k times
    while (k):
        result = math.pow(result, x);
        if (result > m):
            result = result % m;
        k = k - 1;
    return int(result);
 
# Driver Code
x = 5;
k = 2;
m = 3;
 
# Calling function
print(calculate(x, k, m));
     
# This code is contributed
# by mits


C#




// C# program for computing
// x^x^x^x.. %m
using System;
 
class GFG
{
     
// Function to compute
// the given value
static int calculate(int x,
                     int k,
                     int m)
{
    int result = x;
    k--;
 
    // compute power
    // k times
    while (k --> 0)
    {
        result = (int)Math.Pow(result, x);
 
        if (result > m)
            result %= m;
    }
 
    return result;
}
 
// Driver Code
static public void Main ()
{
    int x = 5, k = 2, m = 3;
 
    // Calling function
    Console.WriteLine(
            calculate(x, k, m));
}
}
 
// This code is contributed
// by ajit


PHP




<?php
// PHP program for computing
// x^x^x^x.. %m
 
// Function to compute
// the given value
function calculate($x, $k, $m)
{
    $result = $x;
    $k--;
 
    // compute power k times
    while ($k--)
    {
        $result = pow($result, $x);
 
        if ($result > $m)
            $result %= $m;
    }
 
    return $result;
}
 
// Driver Code
$x = 5;
$k = 2;
$m = 3;
 
// Calling function
echo calculate($x, $k, $m);
     
// This code is contributed
// by akt_mit
?>


Javascript




<script>
//program for computing
// x^x^x^x.. %m
 
// Function to compute
// the given value
function calculate(x, k, m)
{
    let result = x;
    k = k - 1;
 
    // compute power k times
    while (k--)
    {
        result = Math.pow(result, x);
 
        if (result > m)
            result %= m;
    }
 
    return result;
}
 
// Driver Code
let x = 5;
let k = 2;
let m = 3;
 
// Calling function
document.write(calculate(x, k, m));
     
// This code is contributed
// by sravan kumar
</script>


Output: 

2

 

Time Complexity: O(k * logx), where k and x represents the value of the given integers.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
 

An efficient solution is to use Euler’s Totient Function to solve this problem. Since x is a prime number and is always greater than m, that means x and m will always be co-prime. So the fact that will help here is (a^b)%m = (a^(b % et(m)))%m, where et(m) is Euler Totient Function. Consider having a function calculate(x, k, m) that gives the value (x^x^x^x…k times)%m. (x^x^x^x…k times)%m can be written as (a^b)%m = (a^(b % et(m)))%m, where b = calculate(x, k-1, et(m)). A recursive function can be written, with the base cases when k=0 then, answer is 1, and if m=1, then answer is 0. 

Below is the implementation of the above approach. 

C++




// C++ program to compute
// x^x^x^x.. %m
#include <bits/stdc++.h>
using namespace std;
const int N = 1000000;
 
// Create an array to store
// phi or totient values
long long phi[N + 5];
 
// Function to calculate Euler
// Totient values
void computeTotient()
{
    // indicates not evaluated yet
    // and initializes for product
    // formula.
    for (int i = 1; i <= N; i++)
        phi[i] = i;
 
    // Compute other Phi values
    for (int p = 2; p <= N; p++) {
 
        // If phi[p] is not computed already,
        // then number p is prime
        if (phi[p] == p) {
 
            // Phi of a prime number p is
            // always equal to p-1.
            phi[p] = p - 1;
 
            // Update phi values of all
            // multiples of p
            for (int i = 2 * p; i <= N; i += p) {
 
                // Add contribution of p to its
                // multiple i by multiplying with
                // (1 - 1/p)
                phi[i] = (phi[i] / p) * (p - 1);
            }
        }
    }
}
 
// Iterative Function to calculate (x^y)%p in O(log y)
long long power(long long x, long long y, long long p)
{
    long long res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or
    // equal to p
 
    while (y > 0) {
 
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to calculate
// (x^x^x^x...k times)%m
long long calculate(long long x, long long k,
                    long long mod)
{
    // to store different mod values
    long long arr[N];
 
    long long count = 0;
 
    while (mod > 1) {
        arr[count++] = mod;
        mod = phi[mod];
    }
 
    long long result = 1;
    long long loop = count + 1;
    arr[count] = 1;
 
    // run loop in reverse to calculate
    // result
    for (int i = min(k, loop) - 1; i >= 0; i--)
        result = power(x, result, arr[i]);
 
    return result;
}
 
// Driver Code
int main()
{
    // compute euler totient function values
    computeTotient();
 
    long long x = 3, k = 2, m = 3;
 
    // Calling function to compute answer
    cout << calculate(x, k, m) << endl;
 
    return 0;
}


C




// C program to compute
// x^x^x^x.. %m
#include <stdio.h>
 
#define N 1000000
 
// Create an array to store
// phi or totient values
long long phi[N + 5];
 
// Function to calculate Euler
// Totient values
 
int min(int a, int b)
{
  int min = a;
  if(min > b)
    min = b;
  return min;
}
 
void computeTotient()
{
    // indicates not evaluated yet
    // and initializes for product
    // formula.
    for (int i = 1; i <= N; i++)
        phi[i] = i;
 
    // Compute other Phi values
    for (int p = 2; p <= N; p++) {
 
        // If phi[p] is not computed already,
        // then number p is prime
        if (phi[p] == p) {
 
            // Phi of a prime number p is
            // always equal to p-1.
            phi[p] = p - 1;
 
            // Update phi values of all
            // multiples of p
            for (int i = 2 * p; i <= N; i += p) {
 
                // Add contribution of p to its
                // multiple i by multiplying with
                // (1 - 1/p)
                phi[i] = (phi[i] / p) * (p - 1);
            }
        }
    }
}
 
// Iterative Function to calculate (x^y)%p in O(log y)
long long power(long long x, long long y, long long p)
{
    long long res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or
    // equal to p
 
    while (y > 0) {
 
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to calculate
// (x^x^x^x...k times)%m
long long calculate(long long x, long long k,
                    long long mod)
{
    // to store different mod values
    long long arr[N];
 
    long long count = 0;
 
    while (mod > 1) {
        arr[count++] = mod;
        mod = phi[mod];
    }
 
    long long result = 1;
    long long loop = count + 1;
    arr[count] = 1;
 
    // run loop in reverse to calculate
    // result
    for (int i = min(k, loop) - 1; i >= 0; i--)
        result = power(x, result, arr[i]);
 
    return result;
}
 
// Driver Code
int main()
{
    // compute euler totient function values
    computeTotient();
 
    long long x = 3, k = 2, m = 3;
 
    // Calling function to compute answer
    printf("%lld\n",calculate(x, k, m));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash.


Java




// Java program for computing
// x^x^x^x.. %m
class GFG
{
 
// Create an array to store
// phi or totient values
static int N = 1000000;
static long phi[] = new long[N + 5];
 
// Function to calculate
// Euler Totient values
static void computeTotient()
{
    // indicates not evaluated
    // yet and initializes for
    // product formula.
    for (int i = 1; i <= N; i++)
        phi[i] = i;
 
    // Compute other Phi values
    for (int p = 2; p <= N; p++)
    {
 
        // If phi[p] is not
        // computed already,
        // then number p is prime
        if (phi[p] == p)
        {
 
            // Phi of a prime number p
            // is always equal to p-1.
            phi[p] = p - 1;
 
            // Update phi values of
            // all multiples of p
            for (int i = 2 * p; i <= N; i += p)
            {
 
                // Add contribution of p
                // to its multiple i by
                // multiplying with (1 - 1/p)
                phi[i] = (phi[i] / p) *
                              (p - 1);
            }
        }
    }
}
 
// Iterative Function to
// calculate (x^y)%p in O(log y)
static long power(long x, long y, long p)
{
    long res = 1; // Initialize result
 
    x = x % p; // Update x if it is
               // more than or equal to p
 
    while (y > 0)
    {
 
        // If y is odd, multiply
        // x with result
        if ((y & 1) > 0)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to calculate
// (x^x^x^x...k times)%m
static long calculate(long x, long k,
                      long mod)
{
    // to store different
    // mod values
    long arr[] = new long[N];
 
    long count = 0;
 
    while (mod > 1)
    {
        arr[(int)count++] = mod;
        mod = phi[(int)mod];
    }
 
    long result = 1;
    long loop = count + 1;
    arr[(int)count] = 1;
 
    // run loop in reverse
    // to calculate result
    for (int i = (int)Math.min(k, loop) - 1;
                                i >= 0; i--)
        result = power(x, result, arr[i]);
 
    return result;
}
 
// Driver Code
public static void main(String args[])
{
    // compute euler totient
    // function values
    computeTotient();
 
    long x = 3, k = 2, m = 3;
 
    // Calling function
    // to compute answer
    System.out.println(calculate(x, k, m));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 program to compute
# x^x^x^x.. %m
 
N = 1000000
 
# Create an array to store
# phi or totient values
phi=[0 for i in range(N + 5)]
 
# Function to calculate Euler
# Totient values
def computeTotient():
    # indicates not evaluated yet
    # and initializes for product
    # formula.
    for i in range(1, N+1):
        phi[i] = i
 
    # Compute other Phi values
    for p in range(2, N+1):
 
        # If phi[p] is not computed already,
        # then number p is prime
        if (phi[p] == p):
 
            # Phi of a prime number p is
            # always equal to p-1.
            phi[p] = p - 1
 
            # Update phi values of all
            # multiples of p
            for i in range(2*p, N+1, p):
 
                # Add contribution of p to its
                # multiple i by multiplying with
                # (1 - 1/p)
                phi[i] = (phi[i] // p) * (p - 1)
 
 
# Iterative Function to calculate (x^y)%p in O(log y)
def power(x, y, p):
    res = 1 # Initialize result
 
    x = x % p # Update x if it is more than or
    # equal to p
 
    while (y > 0):
 
        # If y is odd, multiply x with result
        if (y & 1):
            res = (res * x) % p
 
        # y must be even now
        y = y >> 1 # y = y/2
        x = (x * x) % p
 
    return res
 
 
# Function to calculate
# (x^x^x^x...k times)%m
def calculate(x, k,mod):
    # to store different mod values
    arr=[0 for i in range(N)]
 
    count = 0
 
    while (mod > 1):
        arr[count] = mod
        count+=1
        mod = phi[mod]
 
    result = 1
    loop = count + 1
    arr[count] = 1
 
    # run loop in reverse to calculate
    # result
    for i in range(min(k,loop),-1,-1):
        result = power(x, result, arr[i])
 
    return result
 
# Driver Code
 
# compute euler totient function values
computeTotient()
 
x = 3
k = 2
m = 3
 
# Calling function to compute answer
print(calculate(x, k, m))
 
# This code is contributed by mohit kumar 29


C#




// C# program for computing
// x^x^x^x.. %m
using System;
 
class GFG
{
     
// Create an array to store
// phi or totient values
static int N = 1000000;
static long []phi = new long[N + 5];
 
// Function to calculate
// Euler Totient values
static void computeTotient()
{
    // indicates not evaluated
    // yet and initializes for
    // product formula.
    for (int i = 1; i <= N; i++)
        phi[i] = i;
 
    // Compute other Phi values
    for (int p = 2; p <= N; p++)
    {
 
        // If phi[p] is not
        // computed already,
        // then number p is prime
        if (phi[p] == p)
        {
 
            // Phi of a prime
            // number p is
            // always equal
            // to p-1.
            phi[p] = p - 1;
 
            // Update phi values
            // of all multiples
            // of p
            for (int i = 2 * p;
                     i <= N; i += p)
            {
 
                // Add contribution of p
                // to its multiple i by
                // multiplying with (1 - 1/p)
                phi[i] = (phi[i] / p) *
                              (p - 1);
            }
        }
    }
}
 
// Iterative Function to
// calculate (x^y)%p in O(log y)
static long power(long x,
                  long y, long p)
{
    long res = 1; // Initialize result
 
    x = x % p; // Update x if it 
               // is more than or
               // equal to p
 
    while (y > 0)
    {
 
        // If y is odd, multiply
        // x with result
        if ((y & 1) > 0)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to calculate
// (x^x^x^x...k times)%m
static long calculate(long x, long k,
                      long mod)
{
    // to store different
    // mod values
    long []arr = new long[N];
 
    long count = 0;
 
    while (mod > 1)
    {
        arr[(int)count++] = mod;
        mod = phi[(int)mod];
    }
 
    long result = 1;
    long loop = count + 1;
    arr[(int)count] = 1;
 
    // run loop in reverse
    // to calculate result
    for (int i = (int)Math.Min(k, loop) - 1;
                                i >= 0; i--)
        result = power(x, result,
                          arr[i]);
 
    return result;
}
 
// Driver Code
static public void Main ()
{
     
// compute euler totient
// function values
computeTotient();
 
long x = 3, k = 2, m = 3;
 
// Calling function
// to compute answer
Console.WriteLine(calculate(x, k, m));
}
}
 
// This code is contributed
// by akt_mit


Javascript




<script>
    // Javascript program for computing x^x^x^x.. %m
     
    // Create an array to store
    // phi or totient values
    let N = 1000000;
    let phi = new Array(N + 5);
    phi.fill(0);
 
    // Function to calculate
    // Euler Totient values
    function computeTotient()
    {
        // indicates not evaluated
        // yet and initializes for
        // product formula.
        for (let i = 1; i <= N; i++)
            phi[i] = i;
 
        // Compute other Phi values
        for (let p = 2; p <= N; p++)
        {
 
            // If phi[p] is not
            // computed already,
            // then number p is prime
            if (phi[p] == p)
            {
 
                // Phi of a prime number p
                // is always equal to p-1.
                phi[p] = p - 1;
 
                // Update phi values of
                // all multiples of p
                for (let i = 2 * p; i <= N; i += p)
                {
 
                    // Add contribution of p
                    // to its multiple i by
                    // multiplying with (1 - 1/p)
                    phi[i] = (phi[i] / p) * (p - 1);
                }
            }
        }
    }
 
    // Iterative Function to
    // calculate (x^y)%p in O(log y)
    function power(x, y, p)
    {
        let res = 1; // Initialize result
 
        x = x % p; // Update x if it is
                   // more than or equal to p
 
        while (y > 0)
        {
 
            // If y is odd, multiply
            // x with result
            if ((y & 1) > 0)
                res = (res * x) % p;
 
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
 
    // Function to calculate
    // (x^x^x^x...k times)%m
    function calculate(x, k, mod)
    {
        // to store different
        // mod values
        let arr = new Array(N);
        arr.fill(0);
 
        let count = 0;
 
        while (mod > 1)
        {
            arr[count++] = mod;
            mod = phi[mod];
        }
 
        let result = 1;
        let loop = count + 1;
        arr[count] = 1;
 
        // run loop in reverse
        // to calculate result
        for (let i = Math.min(k, loop) - 1; i >= 0; i--)
            result = power(x, result, arr[i]);
 
        return result;
    }
     
    // compute euler totient
    // function values
    computeTotient();
  
    let x = 3, k = 2, m = 3;
  
    // Calling function
    // to compute answer
    document.write(calculate(x, k, m));
 
// This code is contributed by rameshtravel07.
</script>


Output: 

0

 

Time Complexity: O(N), where N is 106 since all the Euler Totient values are pre-calculated. 
Auxiliary Space: O(N), where N is 106

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments