Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICompute maximum of the function efficiently over all sub-arrays

Compute maximum of the function efficiently over all sub-arrays

Given an array, arr[] and a function F(i, j). The task is to compute max{F(i, j)} over all sub-arrays [i..j].
The function F() is defined as: 

F(l, r) = \sum_{i = l}^{r - 1} |arr[i] - arr[i+1]|.(-1)^{i-l}

Examples: 

Input : arr[] = { 1, 5, 4, 7 } 
Output :
Values of F(i, j) for all the sub-arrays: 
{ 1, 5 } = |1 – 5| * (1) = 4 
{ 1, 5, 4 } = |1 – 5| * (1) + |5 – 4| * (-1) = 3 
{ 1, 5, 4, 7 } = |1 – 5| * (1) + |5 – 4| * (-1) + |4 – 7| * (1) = 6 
{ 5, 4 } = |5 – 4| * (1) = 1 
{ 5, 4, 7 } = |5 – 4| * (1) + |4 – 7| * (-1) = -2 
{ 4, 7 } = |4 – 7| * (1) = 3
Max of all the above values = 6. 

Input : arr[] = { 1, 4, 2, 3, 1 } 
Output :
 

Naive Approach: A naive approach is to traverse over all sub-arrays and calculate the maximum of function F over all the sub-arrays.

Efficient Approach: A better approach is to consider segments in F(l, r) with odd and even l separately. Two different arrays B[] and C[] can be constructed for this purpose such that:  

B[i] = |arr[i] - arr[i + 1]| * (-1)i
C[i] = |arr[i] - arr[i + 1]| * (-1)i + 1

Now if we observe closely, we just need to find the maximum sum subarray of the arrays B[] and C[] and final answer of the function will be the maximum among both the arrays.

Below is the implementation of the above approach:  

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
 
#define MAX 100005
 
using namespace std;
 
// Function to return maximum sum of a sub-array
int kadaneAlgorithm(const int* ar, int n)
{
    int sum = 0, maxSum = 0;
 
    for (int i = 0; i < n; i++) {
 
        sum += ar[i];
 
        if (sum < 0)
            sum = 0;
 
        maxSum = max(maxSum, sum);
    }
 
    return maxSum;
}
 
// Function to return maximum value of function F
int maxFunction(const int* arr, int n)
{
 
    int b[MAX], c[MAX];
 
    // Compute arrays B[] and C[]
    for (int i = 0; i < n - 1; i++) {
        if (i & 1) {
            b[i] = abs(arr[i + 1] - arr[i]);
            c[i] = -b[i];
        }
        else {
            c[i] = abs(arr[i + 1] - arr[i]);
            b[i] = -c[i];
        }
    }
 
    // Find maximum sum sub-array of both of the
    // arrays and take maximum among them
    int ans = kadaneAlgorithm(b, n - 1);
    ans = max(ans, kadaneAlgorithm(c, n - 1));
 
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 5, 4, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << maxFunction(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int MAX = 100005;
 
 
// Function to return maximum sum of a sub-array
static int kadaneAlgorithm(int[] ar, int n)
{
    int sum = 0, maxSum = 0;
 
    for (int i = 0; i < n; i++)
    {
        sum += ar[i];
 
        if (sum < 0)
            sum = 0;
 
        maxSum = Math.max(maxSum, sum);
    }
 
    return maxSum;
}
 
// Function to return maximum value
// of function F
static int maxFunction(int[] arr, int n)
{
 
    int []b = new int[MAX];
    int []c = new int[MAX];
 
    // Compute arrays B[] and C[]
    for (int i = 0; i < n - 1; i++)
    {
        if (i % 2 == 1)
        {
            b[i] = Math.abs(arr[i + 1] - arr[i]);
            c[i] = -b[i];
        }
        else
        {
            c[i] = Math.abs(arr[i + 1] - arr[i]);
            b[i] = -c[i];
        }
    }
 
    // Find maximum sum sub-array of both of the
    // arrays and take maximum among them
    int ans = kadaneAlgorithm(b, n - 1);
    ans = Math.max(ans, kadaneAlgorithm(c, n - 1));
 
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 5, 4, 7 };
    int n = arr.length;
    System.out.println(maxFunction(arr, n));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the above approach
MAX = 100005;
 
# Function to return maximum
# sum of a sub-array
def kadaneAlgorithm(ar, n) :
 
    sum = 0; maxSum = 0;
 
    for i in range(n) :
 
        sum += ar[i];
 
        if (sum < 0) :
            sum = 0;
 
        maxSum = max(maxSum, sum);
 
    return maxSum;
 
# Function to return maximum
# value of function F
def maxFunction(arr, n) :
 
    b = [0] * MAX;
    c = [0] * MAX;
 
    # Compute arrays B[] and C[]
    for i in range(n - 1) :
        if (i & 1) :
            b[i] = abs(arr[i + 1] - arr[i]);
            c[i] = -b[i];
         
        else :
            c[i] = abs(arr[i + 1] - arr[i]);
            b[i] = -c[i];
 
    # Find maximum sum sub-array of both of the
    # arrays and take maximum among them
    ans = kadaneAlgorithm(b, n - 1);
    ans = max(ans, kadaneAlgorithm(c, n - 1));
 
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 5, 4, 7 ];
    n = len(arr)
 
    print(maxFunction(arr, n));
 
# This code is contributed by Ryuga


C#




// C# implementation of the approach
using System;
     
class GFG
{
static int MAX = 100005;
 
// Function to return maximum sum of a sub-array
static int kadaneAlgorithm(int[] ar, int n)
{
    int sum = 0, maxSum = 0;
 
    for (int i = 0; i < n; i++)
    {
        sum += ar[i];
 
        if (sum < 0)
            sum = 0;
 
        maxSum = Math.Max(maxSum, sum);
    }
 
    return maxSum;
}
 
// Function to return maximum value
// of function F
static int maxFunction(int[] arr, int n)
{
    int []b = new int[MAX];
    int []c = new int[MAX];
 
    // Compute arrays B[] and C[]
    for (int i = 0; i < n - 1; i++)
    {
        if (i % 2 == 1)
        {
            b[i] = Math.Abs(arr[i + 1] - arr[i]);
            c[i] = -b[i];
        }
        else
        {
            c[i] = Math.Abs(arr[i + 1] - arr[i]);
            b[i] = -c[i];
        }
    }
 
    // Find maximum sum sub-array of both of the
    // arrays and take maximum among them
    int ans = kadaneAlgorithm(b, n - 1);
    ans = Math.Max(ans, kadaneAlgorithm(c, n - 1));
 
    return ans;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 5, 4, 7 };
    int n = arr.Length;
    Console.WriteLine(maxFunction(arr, n));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// JavaScript implementation of the above approach
const MAX = 100005;
 
// Function to return maximum sum of a sub-array
function kadaneAlgorithm(ar, n)
{
    let sum = 0, maxSum = 0;
 
    for(let i = 0; i < n; i++)
    {
        sum += ar[i];
 
        if (sum < 0)
            sum = 0;
 
        maxSum = Math.max(maxSum, sum);
    }
    return maxSum;
}
 
// Function to return maximum
// value of function F
function maxFunction(arr, n)
{
    let b = new Array(MAX),
        c = new Array(MAX);
 
    // Compute arrays B[] and C[]
    for(let i = 0; i < n - 1; i++)
    {
        if (i & 1)
        {
            b[i] = Math.abs(arr[i + 1] -
                            arr[i]);
            c[i] = -b[i];
        }
        else
        {
            c[i] = Math.abs(arr[i + 1] -
                            arr[i]);
            b[i] = -c[i];
        }
    }
 
    // Find maximum sum sub-array of both of the
    // arrays and take maximum among them
    let ans = kadaneAlgorithm(b, n - 1);
    ans = Math.max(ans,
          kadaneAlgorithm(c, n - 1));
 
    return ans;
}
 
// Driver code
let arr = [ 1, 5, 4, 7 ];
let n = arr.length;
 
document.write(maxFunction(arr, n));
 
// This code is contributed by Manoj.
 
</script>


Output: 

6

 

Time Complexity: O(n)

Auxiliary Space: O(MAX)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments