Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AICompress a Binary Tree into an integer diagonally

Compress a Binary Tree into an integer diagonally

Given a Binary Tree consisting of N nodes, the task is to first compress the tree diagonally to get a list of integers and then, again compress the list to get a single integer using the following operations:

  • When a tree is compressed diagonally, its value in binary representation gets compressed.
  • Consider each bit position of each node value present in a diagonal. If a position has S set bits and NS non-set bits, then set the bit for that position only if S is greater than NS. Otherwise, unset the bit for that position.
  • Compress each diagonal to convert the tree into a list. Then, compress each array element into a single integer by using the same process.

Example: If 7, 6, 3 and 4 gets compressed, then their binary representations, i.e. (111)2, (110)2, (011)2 and (100)2 gets compressed. For the 0th position, S ? NS and for the 1st and 2nd positions, S > NS
Therefore, the number becomes (110)2 = 6.

Examples:

Input:               6
                     /      \
                  5          3
              /     \      /    \
           3        5   3       4
Output: 3
Explanation: 

Diagonal 1: Compress( 6, 3, 4 ) = 6
Diagonal 2: Compress( 5, 5, 3 ) = 5
Diagonal 3: Compress( 3 ) = 3
Finally, compress the list (6, 5, 3) to get 7.

Input:               10
                      /      \
                  5           2
              /     \
           6         8
Output: 2

Approach: The idea is to use a Hashmap to store all the nodes which belong to a particular diagonal of the tree. Follow the steps below to solve the problem:

  • For the diagonal traversal of the tree, keep track of the horizontal distance from the root node for each node.
  • Use a Hashmap to store the elements belonging to the same diagonal.
  • After the traversal, count the number of set bits for each position for each diagonal of the tree and set the bit for the positions where the number of set bits exceeds the number of unset bits.
  • Store the compressed value of each diagonal in an array.
  • After obtaining the array, apply the same steps for compression to obtain the required integer.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
 
using namespace std;
 
struct TreeNode{
  int val;
  TreeNode *left,*right;
 
    TreeNode(int v){
        val = v;
        left = NULL;
        right = NULL;
    }
};
 
// Function to compress the elements
// in an array into an integer
int findCompressValue(vector<int> arr){
    int ans = 0;
    int getBit = 1;
 
    // Check for each bit position
    for (int i = 0; i < 32; i++){
        int S = 0;
        int NS = 0;
 
        for (int j:arr){
 
            // Update the count of
            // set and non-set bits
            if (getBit & j)
                S += 1;
            else
                NS += 1;
          }
 
        // If number of set bits exceeds
        // the number of non-set bits,
        // then add set bits value to ans
        if (S > NS)
            ans += pow(2,i);
 
        getBit <<= 1;
      }
    return ans;
}
 
// Perform Inorder Traversal
// on the Binary Tree
void diagonalOrder(TreeNode *root,int d,map<int,vector<int> > &mp){
    if (!root)
        return;
 
    // Store all nodes of the same
    // line together as a vector
    mp[d].push_back(root->val);
 
    // Increase the vertical
    // distance of left child
    diagonalOrder(root->left, d + 1, mp);
 
    // Vertical distance remains
    // same for right child
    diagonalOrder(root->right, d, mp);
}
 
// Function to compress a given
// Binary Tree into an integer
int findInteger(TreeNode *root){
 
    // Declare a map
    map<int,vector<int> > mp;
 
    diagonalOrder(root, 0, mp);
 
    //Store all the compressed values of
    //diagonal elements in an array
    vector<int> arr;
 
    for (auto i:mp)
        arr.push_back(findCompressValue(i.second));
 
    // Compress the array into an integer
    return findCompressValue(arr);
}
 
// Driver Code
// Given Input
int main()
{
  TreeNode *root = new TreeNode(6);
  root->left = new TreeNode(5);
  root->right = new TreeNode(3);
  root->left->left = new TreeNode(3);
  root->left->right = new TreeNode(5);
  root->right->left = new TreeNode(3);
  root->right->right = new TreeNode(4);
 
  // Function Call
  cout << findInteger(root);
 
  return 0;
}
 
// This code is contributed by mohit kumar 29.


Java




import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
 
class TreeNode {
  public int val;
  public TreeNode left, right;
 
  TreeNode(int v) {
    val = v;
    left = null;
    right = null;
  }
}
 
class GfG {
  // Function to compress the elements in an array into an integer
  static int findCompressValue(List<Integer> arr) {
    int ans = 0;
    int getBit = 1;
 
    // Check for each bit position
    for (int i = 0; i < 32; i++) {
      int S = 0;
      int NS = 0;
 
      for (int j = 0; j < arr.size(); j++) {
        // Update the count of set and non-set bits
        if ((getBit & arr.get(j)) != 0) {
          S += 1;
        } else {
          NS += 1;
        }
      }
 
      // If number of set bits exceeds the number of non-set bits,
      // then add set bits value to ans
      if (S > NS) {
        ans += Math.pow(2, i);
      }
 
      getBit <<= 1;
    }
    return ans;
  }
 
  // Perform Inorder Traversal on the Binary Tree
  void diagonalOrder(TreeNode root, int d, Map<Integer, List<Integer>> mp) {
    if (root == null) {
      return;
    }
 
    // Store all nodes of the same line together as a vector
    mp.computeIfAbsent(d, k -> new ArrayList<>()).add(root.val);
 
    // Increase the vertical distance of left child
    diagonalOrder(root.left, d + 1, mp);
 
    // Vertical distance remains same for right child
    diagonalOrder(root.right, d, mp);
  }
 
  // Function to compress a given Binary Tree into an integer
  int findInteger(TreeNode root) {
    // Declare a map
    Map<Integer, List<Integer>> mp = new TreeMap<>();
 
    diagonalOrder(root, 0, mp);
 
    // Store all the compressed values of diagonal elements in an array
    List<Integer> arr = new ArrayList<>();
 
    for (Map.Entry<Integer, List<Integer>> entry : mp.entrySet()) {
      arr.add(findCompressValue(entry.getValue()));
    }
 
    // Compress the array into an integer
    return findCompressValue(arr);
  }
 
  // Driver code
  public static void main(String[] args) {
    // Given input
    TreeNode root = new TreeNode(6);
    root.left = new TreeNode(5);
    root.right = new TreeNode(3);
    root.left.left = new TreeNode(3);
    root.left.right = new TreeNode(5);
    root.right.left = new TreeNode(3);
    root.right.right = new TreeNode(4);
 
    // Function call
    System.out.println(new GfG().findInteger(root));
  }
}
 
// This code is contributed by poojaagarwal2


Python3




# Python program for the above approach
 
class TreeNode:
 
    def __init__(self, val ='',
                 left = None,
                 right = None):
        self.val = val
        self.left = left
        self.right = right
 
# Function to compress the elements
# in an array into an integer
def findCompressValue(arr):
    ans = 0
    getBit = 1
 
    # Check for each bit position
    for i in range(32):
        S = 0
        NS = 0
 
        for j in arr:
 
            # Update the count of
            # set and non-set bits
            if getBit & j:
                S += 1
            else:
                NS += 1
 
        # If number of set bits exceeds
        # the number of non-set bits,
        # then add set bits value to ans
        if S > NS:
            ans += 2**i
 
        getBit <<= 1
 
    return ans
 
# Function to compress a given
# Binary Tree into an integer
def findInteger(root):
 
    # Declare a map
    mp = {}
 
    # Perform Inorder Traversal
    # on the Binary Tree
    def diagonalOrder(root, d, mp):
        if not root:
            return
 
        # Store all nodes of the same
        # line together as a vector
        try:
            mp[d].append(root.val)
 
        except KeyError:
            mp[d] = [root.val]
 
        # Increase the vertical
        # distance of left child
        diagonalOrder(root.left, d + 1, mp)
 
        # Vertical distance remains
        # same for right child
        diagonalOrder(root.right, d, mp)
 
    diagonalOrder(root, 0, mp)
 
    # Store all the compressed values of
    # diagonal elements in an array
    arr = []
    for i in mp:
        arr.append(findCompressValue(mp[i]))
 
    # Compress the array into an integer
    return findCompressValue(arr)
 
 
# Driver Code
# Given Input
root = TreeNode(6)
root.left = TreeNode(5)
root.right = TreeNode(3)
root.left.left = TreeNode(3)
root.left.right = TreeNode(5)
root.right.left = TreeNode(3)
root.right.right = TreeNode(4)
 
# Function Call
print(findInteger(root))


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
// TreeNode class definition
class TreeNode {
  public int val;
  public TreeNode left, right;
 
  // Constructor
  public TreeNode(int v)
  {
    val = v;
    left = null;
    right = null;
  }
}
 
class GFG {
  // Function to compress the elements in an array into an
  // integer
  static int FindCompressValue(List<int> arr)
  {
    int ans = 0;
    int getBit = 1;
 
    // Check for each bit position
    for (int i = 0; i < 32; i++) {
      int S = 0;
      int NS = 0;
 
      for (int j = 0; j < arr.Count; j++) {
        // Update the count of set and non-set bits
        if ((getBit & arr[j]) != 0) {
          S += 1;
        }
        else {
          NS += 1;
        }
      }
 
      // If number of set bits exceeds the number of
      // non-set bits, then add set bits value to ans
      if (S > NS) {
        ans += (int)Math.Pow(2, i);
      }
 
      getBit <<= 1;
    }
    return ans;
  }
 
  // Perform Inorder Traversal on the Binary Tree
  static void
    DiagonalOrder(TreeNode root, int d,
                  Dictionary<int, List<int> > mp)
  {
    if (root == null) {
      return;
    }
 
    // Store all nodes of the same line together as a
    // vector
    if (!mp.ContainsKey(d)) {
      mp[d] = new List<int>();
    }
    mp[d].Add(root.val);
 
    // Increase the vertical distance of left child
    DiagonalOrder(root.left, d + 1, mp);
 
    // Vertical distance remains same for right child
    DiagonalOrder(root.right, d, mp);
  }
 
  // Function to compress a given Binary Tree into an
  // integer
  static int FindInteger(TreeNode root)
  {
    // Declare a dictionary
    Dictionary<int, List<int> > mp
      = new Dictionary<int, List<int> >();
 
    DiagonalOrder(root, 0, mp);
 
    // Store all the compressed values of diagonal
    // elements in an array
    List<int> arr = new List<int>();
 
    foreach(KeyValuePair<int, List<int> > entry in mp)
    {
      arr.Add(FindCompressValue(entry.Value));
    }
 
    // Compress the array into an integer
    return FindCompressValue(arr);
  }
 
  // Driver code
  static void Main(string[] args)
  {
    // Given input
    TreeNode root = new TreeNode(6);
    root.left = new TreeNode(5);
    root.right = new TreeNode(3);
    root.left.left = new TreeNode(3);
    root.left.right = new TreeNode(5);
    root.right.left = new TreeNode(3);
    root.right.right = new TreeNode(4);
 
    // Function call
    Console.WriteLine(FindInteger(root));
  }
}
 
 
// This code is contributed by phasing17


Javascript




       // JavaScript code for the above approach
       class TreeNode {
           constructor(val) {
               this.val = val;
               this.left = null;
               this.right = null;
           }
       }
 
       // Function to compress the elements
       // in an array into an integer
       function findCompressValue(arr) {
 
           let getBit = 1;
           let ans = 0;
            
           // Check for each bit position
           for (let i = 0; i < 32; i++) {
               let S = 0;
               let NS = 0;
 
               for (let j of arr) {
                   // Update the count of
                   // set and non-set bits
                   if (getBit & j) {
                       S += 1;
                   } else {
                       NS += 1;
                   }
               }
 
               // If number of set bits exceeds
               // the number of non-set bits,
               // then add set bits value to ans
               if (S > NS) {
                   ans += 2 ** i;
               }
 
               getBit <<= 1;
           }
           return ans;
       }
 
       // Perform Inorder Traversal
       // on the Binary Tree
       function diagonalOrder(root, d, mp) {
           if (!root) {
               return;
           }
 
           // Store all nodes of the same
           // line together as a vector
           if (!mp[d]) {
               mp[d] = [];
           }
           mp[d].push(root.val);
 
           // Increase the vertical
           // distance of left child
           diagonalOrder(root.left, d + 1, mp);
 
           // Vertical distance remains
           // same for right child
           diagonalOrder(root.right, d, mp);
       }
 
       // Function to compress a given
       // Binary Tree into an integer
       function findInteger(root) {
           // Declare a map
           let mp = {};
 
           diagonalOrder(root, 0, mp);
 
           // Store all the compressed values of
           // diagonal elements in an array
           let arr = [];
 
           for (let [key, value] of Object.entries(mp)) {
               arr.push(findCompressValue(value));
           }
 
           // Compress the array into an integer
           return findCompressValue(arr);
       }
 
       // Given Input
       let root = new TreeNode(6);
       root.left = new TreeNode(5);
       root.right = new TreeNode(3);
       root.left.left = new TreeNode(3);
       root.left.right = new TreeNode(5);
       root.right.left = new TreeNode(3);
       root.right.right = new TreeNode(4);
 
       // Function Call
       console.log(findInteger(root));
 
// This code is contributed by Potta Lokesh


Output: 

7

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments