Thursday, December 26, 2024
Google search engine
HomeLanguagesDynamic ProgrammingCocke–Younger–Kasami (CYK) Algorithm

Cocke–Younger–Kasami (CYK) Algorithm

Grammar denotes the syntactical rules for conversation in natural language. But in the theory of formal language, grammar is defined as a set of rules that can generate strings. The set of all strings that can be generated from a grammar is called the language of the grammar.

Context Free Grammar: 
We are given a Context Free Grammar G = (V, X, R, S) and a string w, where:

  • V is a finite set of variables or non-terminal symbols,
  • X is a finite set of terminal symbols,
  • R is a finite set of rules,
  • S is the start symbol, a distinct element of V, and
  • V and X are assumed to be disjoint sets.

The Membership problem is defined as: Grammar G generates a language L(G). Is the given string a member of L(G)?

Chomsky Normal Form: 
A Context Free Grammar G is in Chomsky Normal Form (CNF) if each rule if each rule of G is of the form:

  • A –> BC,        [ with at most two non-terminal symbols on the RHS ]
  • A –> a, or      [ one terminal symbol on the RHS ]
  • S –> nullstring            [ null string ]

Cocke-Younger-Kasami Algorithm 
It is used to solves the membership problem using a dynamic programming approach. The algorithm is based on the principle that the solution to problem [i, j] can constructed from solution to subproblem [i, k] and solution to sub problem [k, j]. The algorithm requires the Grammar G to be in Chomsky Normal Form (CNF). Note that any Context-Free Grammar can be systematically converted to CNF. This restriction is employed so that each problem can only be divided into two subproblems and not more – to bound the time complexity. 

How does the CYK Algorithm work?

For a string of length N, construct a table T of size N x N. Each cell in the table T[i, j] is the set of all constituents that can produce the substring spanning from position i to j. The process involves filling the table with the solutions to the subproblems encountered in the bottom-up parsing process. Therefore, cells will be filled from left to right and bottom to top.

 

1

2

3

4

5

1 [1, 1] [1, 2] [1, 3] [1, 4] [1, 5]
2   [2, 2] [2, 3] [2, 4] [2, 5]
3     [3, 3] [3, 4] [3, 5]
4       [4, 4] [4, 5]
5         [5, 5]

In T[i, j], the row number i denotes the start index and the column number j denotes the end index.

A \in T[i, j] \text{ if and only if } B \in T[i, k], C \in T[k, j] \text{ and } A \rightarrow BC \text{ is a rule of G}
 

The algorithm considers every possible subsequence of letters and adds K to T[i, j] if the sequence of letters starting from i to j can be generated from the non-terminal K.  For subsequences of length 2 and greater, it considers every possible partition of the subsequence into two parts, and checks if there is a rule of the form A ? BC in the grammar where B and C can generate the two parts respectively, based on already existing entries in T. The sentence can be produced by the grammar only if the entire string is matched by the start symbol, i.e, if S is a member of T[1, n].

 

Consider a sample grammar in Chomsky Normal Form:

 

NP   -->  Det | Nom
Nom  -->  AP | Nom
AP  -->  Adv | A
Det  -->  a | an
Adv  -->  very | extremely
AP   -->  heavy | orange | tall
A   -->  heavy | orange | tall | muscular
Nom -->  book | orange | man

 

Now consider the phrase, “a very heavy orange book“:

 

a(1) very(2) heavy (3) orange(4) book(5)

 

Let us start filling up the table from left to right and bottom to top, according to the rules described above:

 

 

1
a

2
very

3
heavy

4
orange

5
book

1
a

Det

NP

NP

2
very

 

Adv

AP

Nom

Nom

3
heavy

   

A, AP

Nom

Nom

4
orange

      Nom, A, AP

Nom

5
book

       

Nom

 

The table is filled in the following manner:

 

  1. T[1, 1] = {Det} as Det –> a is one of the rules of the grammar.
  2. T[2, 2] = {Adv} as Adv –> very is one of the rules of the grammar.
  3. T[1, 2] = {} as no matching rule is observed.
  4. T[3, 3] = {A, AP} as A –> very and AP –> very are rules of the grammar.
  5. T[2, 3] = {AP} as AP –> Adv (T[2, 2]) A (T[3, 3]) is a rule of the grammar.
  6. T[1, 3] = {} as no matching rule is observed.
  7. T[4, 4] = {Nom, A, AP} as Nom –> orange and A –> orange and AP –> orange are rules of the grammar.
  8. T[3, 4] = {Nom} as Nom –> AP (T[3, 3]) Nom (T[3, 4]) is a rule of the grammar.
  9. T[2, 4] = {Nom} as Nom –> AP (T[2, 3]) Nom (T[4, 4]) is a rule of the grammar.
  10. T[1, 4] = {NP} as NP –> Det (T[1, 1]) Nom (T[2, 4]) is a rule of the grammar.
  11. T[5, 5] = {Nom} as Nom –> book is a rule of the grammar.
  12. T[4, 5] = {Nom} as Nom –> AP (T[4, 4]) Nom (T[5, 5]) is a rule of the grammar.
  13. T[3, 5] = {Nom} as Nom –> AP (T[3, 3]) Nom (T[4, 5]) is a rule of the grammar.
  14. T[2, 5] = {Nom} as Nom –> AP (T[2, 3]) Nom (T[4, 5]) is a rule of the grammar.
  15. T[1, 5] = {NP} as NP –> Det (T[1, 1]) Nom (T[2, 5]) is a rule of the grammar.

 

We see that T[1][5] has NP, the start symbol, which means that this phrase is a member of the language of the grammar G

 

The parse tree of this phrase would look like this:

 

 

Let us look at another example phrase, “a very tall extremely muscular man”:

 

a(1) very(2) tall(3) extremely(4) muscular(5) man(6)

 

We will now use the CYK algorithm to find if this string is a member of the grammar G:

 

 

1
a

2
very

3
tall

4
extremely

5
muscular

6
man

1
a

Det

NP

2
very

 

Adv

AP

Nom

3
tall

   

AP, A

Nom

4
extremely

     

Adv

AP

Nom

5
muscular

       

A

6
man

         

Nom

 

We see that T[1][6] has NP, the start symbol, which means that this phrase is a member of the language of the grammar G.

Below is the implementation of the above algorithm:
 

C++




// C++ implementation for the
// CYK Algorithm
 
#include<bits/stdc++.h>
using namespace std;
 
// Non-terminals symbols
vector<string> terminals,non_terminals;
 
// Rules of the grammar
unordered_map<string,vector<vector<string>>> R;
 
// function to perform the CYK Algorithm
void cykParse(vector<string> w)
{
  int n = (int)w.size();
 
  // Initialize the table
  map<int,map<int,set<string>>> T;
   
  // Filling in the table
  for(int j=0;j<n;j++)
  {
 
    // Iterate over the rules
    for(auto x:R)
    {
      string lhs = x.first;
      vector<vector<string>> rule = x.second;
       
      for(auto rhs:rule)
      {
 
        // If a terminal is found
        if(rhs.size() == 1 && rhs[0] == w[j])
          T[j][j].insert(lhs);
      }
 
    }
    for(int i=j;i>=0;i--)
    {
 
      // Iterate over the range from i to j
      for(int k = i;k<=j;k++)
      {
 
        // Iterate over the rules
        for(auto x:R)
        {
          string lhs = x.first;
          vector<vector<string>> rule = x.second;
 
          for(auto rhs:rule)
          {
          // If a terminal is found
            if(rhs.size()==2 && T[i][k].find(rhs[0])!=T[i][k].end() && T[k+1][j].find(rhs[1])!=T[k+1][j].end())
              T[i][j].insert(lhs);
          }
 
        }
      }
    }
  }
 
  // If word can be formed by rules
  // of given grammar
  if(T[0][n-1].size()!=0)
    cout << "True\n";
  else
    cout << "False\n";
}
 
// Driver Code
int main()
{
  // terminal symbols
  terminals = {"book", "orange", "man",
             "tall", "heavy",
             "very", "muscular"};
   
  // non terminal symbols
  non_terminals = {"NP", "Nom", "Det", "AP",
                  "Adv", "A"};
   
  // Rules
  R["NP"]={{"Det", "Nom"}};
  R["Nom"]= {{"AP", "Nom"}, {"book"},
             {"orange"}, {"man"}};
  R["AP"] = {{"Adv", "A"}, {"heavy"},
            {"orange"}, {"tall"}};
  R["Det"] = {{"a"}};
  R["Adv"] = {{"very"}, {"extremely"}};
  R["A"] = {{"heavy"}, {"orange"}, {"tall"},
           {"muscular"}};
   
  // Given String
  vector<string> w = {"a", "very", "heavy", "orange", "book"};
 
  // Function Call
  cykParse(w);
 
  return 0;
}


Java




import java.util.*;
 
class GFG
{
   
  // Non-terminals symbols
  static List<String> terminals = new ArrayList<>();
  static List<String> non_terminals = new ArrayList<>();
 
  // Rules of the grammar
  static Map<String, List<List<String> > > R
    = new HashMap<>();
 
  // function to perform the CYK Algorithm
  static void cykParse(List<String> w)
  {
    int n = w.size();
 
    // Initialize the table
    Map<Integer, Map<Integer, Set<String> > > T
      = new HashMap<>();
 
    // Filling in the table
    for (int j = 0; j < n; j++) {
 
      // Iterate over the rules
      for (Map.Entry<String, List<List<String> > > x :
           R.entrySet()) {
        String lhs = x.getKey();
        List<List<String> > rule = x.getValue();
 
        for (List<String> rhs : rule) {
 
          // If a terminal is found
          if (rhs.size() == 1
              && rhs.get(0).equals(w.get(j))) {
            if (T.get(j) == null)
              T.put(j, new HashMap<>());
            T.get(j)
              .computeIfAbsent(
              j, k -> new HashSet<>())
              .add(lhs);
          }
        }
      }
      for (int i = j; i >= 0; i--) {
 
        // Iterate over the range from i to j
        for (int k = i; k <= j; k++) {
 
          // Iterate over the rules
          for (Map.Entry<String,
               List<List<String> > > x :
               R.entrySet()) {
            String lhs = x.getKey();
            List<List<String> > rule
              = x.getValue();
 
            for (List<String> rhs : rule) {
              // If a terminal is found
              if (rhs.size() == 2
                  && T.get(i) != null
                  && T.get(i).get(k) != null
                  && T.get(i).get(k).contains(
                    rhs.get(0))
                  && T.get(k + 1) != null
                  && T.get(k + 1).get(j)
                  != null
                  && T.get(k + 1)
                  .get(j)
                  .contains(
                    rhs.get(1))) {
                if (T.get(i) == null)
                  T.put(i,
                        new HashMap<>());
                if (T.get(i).get(j) == null)
                  T.get(i).put(
                  j, new HashSet<>());
                T.get(i).get(j).add(lhs);
              }
            }
          }
        }
      }
    }
 
    // If word can be formed by rules
    // of given grammar
    if (T.get(0) != null && T.get(0).get(n - 1) != null
        && T.get(0).get(n - 1).size() != 0)
      System.out.println("True");
    else
      System.out.println("False");
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    // terminal symbols
    terminals
      = Arrays.asList("book", "orange", "man", "tall",
                      "heavy", "very", "muscular");
 
    // non terminal symbols
    non_terminals = Arrays.asList("NP", "Nom", "Det",
                                  "AP", "Adv", "A");
 
    // Rules
    R.put("NP",
          Arrays.asList(Arrays.asList("Det", "Nom")));
    R.put("Nom",
          Arrays.asList(Arrays.asList("AP", "Nom"),
                        Arrays.asList("book"),
                        Arrays.asList("orange"),
                        Arrays.asList("man")));
    R.put("AP", Arrays.asList(Arrays.asList("Adv", "A"),
                              Arrays.asList("heavy"),
                              Arrays.asList("orange"),
                              Arrays.asList("tall")));
    R.put("Det", Arrays.asList(Arrays.asList("a")));
    R.put("Adv",
          Arrays.asList(Arrays.asList("very"),
                        Arrays.asList("extremely")));
    R.put("A",
          Arrays.asList(Arrays.asList("heavy"),
                        Arrays.asList("orange"),
                        Arrays.asList("tall"),
                        Arrays.asList("muscular")));
 
    // Given String
    List<String> w = Arrays.asList("a", "very", "heavy",
                                   "orange", "book");
 
    // Function Call
    cykParse(w);
  }
}
 
// This code is contributed by lokeshpotta20


Python3




# Python implementation for the
# CYK Algorithm
 
# Non-terminal symbols
non_terminals = ["NP", "Nom", "Det", "AP",
                  "Adv", "A"]
terminals = ["book", "orange", "man",
             "tall", "heavy",
             "very", "muscular"]
 
# Rules of the grammar
R = {
     "NP": [["Det", "Nom"]],
     "Nom": [["AP", "Nom"], ["book"],
             ["orange"], ["man"]],
     "AP": [["Adv", "A"], ["heavy"],
            ["orange"], ["tall"]],
     "Det": [["a"]],
     "Adv": [["very"], ["extremely"]],
     "A": [["heavy"], ["orange"], ["tall"],
           ["muscular"]]
    }
 
# Function to perform the CYK Algorithm
def cykParse(w):
    n = len(w)
     
    # Initialize the table
    T = [[set([]) for j in range(n)] for i in range(n)]
 
    # Filling in the table
    for j in range(0, n):
 
        # Iterate over the rules
        for lhs, rule in R.items():
            for rhs in rule:
                 
                # If a terminal is found
                if len(rhs) == 1 and \
                rhs[0] == w[j]:
                    T[j][j].add(lhs)
 
        for i in range(j, -1, -1):  
              
            # Iterate over the range i to j + 1  
            for k in range(i, j + 1):    
 
                # Iterate over the rules
                for lhs, rule in R.items():
                    for rhs in rule:
                         
                        # If a terminal is found
                        if len(rhs) == 2 and \
                        rhs[0] in T[i][k] and \
                        rhs[1] in T[k + 1][j]:
                            T[i][j].add(lhs)
 
    # If word can be formed by rules
    # of given grammar
    if len(T[0][n-1]) != 0:
        print("True")
    else:
        print("False")
     
# Driver Code
 
# Given string
w = "a very heavy orange book".split()
 
# Function Call
cykParse(w)


C#




// C# program to implement above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG
{
 
    // terminal and Non-terminals symbols
    // static List<string> terminals = new List<string>();
    // static List<string> non_terminals = new List<string>();
 
    // Rules of the grammar
    static Dictionary<string,List<List<string>>> R = new Dictionary<string,List<List<string>>>();
 
    // function to perform the CYK Algorithm
    static void cykParse(List<string> w)
    {
        int n = w.Count;
 
        // Initialize the table
        SortedDictionary<int, SortedDictionary<int, SortedSet<string>>> T = new SortedDictionary<int, SortedDictionary<int, SortedSet<string>>>();
 
        // Filling in the table
        for (int j = 0 ; j < n ; j++)
        {
 
            // Iterate over the rules
            foreach (KeyValuePair<string,List<List<string>>> x in R)
            {
                string lhs = x.Key;
                List<List<string>> rule = x.Value;
                 
                foreach (List<string> rhs in rule)
                {
 
                    // If a terminal is found
                    if(rhs.Count == 1 && rhs[0] == w[j]){
                        if(!T.ContainsKey(j)){
                            T.Add(j, new SortedDictionary<int, SortedSet<string>>());
                        }
                        if(!T[j].ContainsKey(j)){
                            T[j].Add(j, new SortedSet<string>());
                        }
                        T[j][j].Add(lhs);
                    }
                }
 
            }
            for(int i = j ; i >= 0 ; i--)
            {
 
                // Iterate over the range from i to j
                for(int k = i ; k <= j ; k++)
                {
 
                    // Iterate over the rules
                    foreach (KeyValuePair<string,List<List<string>>> x in R)
                    {
                        string lhs = x.Key;
                        List<List<string>> rule = x.Value;
 
                        foreach (List<string> rhs in rule)
                        {
                        // If a terminal is found
                            if(rhs.Count == 2 &&
                                T.ContainsKey(i) &&
                                T[i].ContainsKey(k) &&
                                T[i][k].Contains(rhs[0]) &&
                                T.ContainsKey(k + 1) &&
                                T[k + 1].ContainsKey(j) &&
                                T[k + 1][j].Contains(rhs[1]))
                            {
                                if(!T.ContainsKey(i)){
                                    T.Add(i, new SortedDictionary<int, SortedSet<string>>());
                                }
                                if(!T[i].ContainsKey(j)){
                                    T[i].Add(j, new SortedSet<string>());
                                }
                                T[i][j].Add(lhs);
                            }
                        }
 
                    }
                }
            }
        }
 
        // If word can be formed by rules
        // of given grammar
        if(T.ContainsKey(0) && T[0].ContainsKey(n - 1) && T[0][n - 1].Count != 0){
            Console.Write("True\n");
        }else{
            Console.Write("False\n");
        }
    }
 
     
    // Driver code
    public static void Main(string[] args){
 
        // terminal symbols
        // terminals = new List<string>{
        //     "book",
        //     "orange", "man",
        //    "tall", "heavy",
        //    "very", "muscular"
        // };
 
        // non terminal symbols
        // non_terminals = new List<string>{
        //     "NP", "Nom", "Det",
        //     "AP", "Adv", "A"
        // };
 
        // Rules
        R.Add("NP", new List<List<string>>{
            new List<string>{"Det", "Nom"}
        });
 
        R["Nom"]= new List<List<string>>{
            new List<string>{"AP", "Nom"},
            new List<string>{"book"},
            new List<string>{"orange"},
            new List<string>{"man"}
        };
 
        R["AP"] = new List<List<string>>{
            new List<string>{"Adv", "A"},
            new List<string>{"heavy"},
            new List<string>{"orange"},
            new List<string>{"tall"}
        };
 
        R["Det"] = new List<List<string>>{
            new List<string>{"a"}
        };
 
        R["Adv"] = new List<List<string>>{
            new List<string>{"very"},
            new List<string>{"extremely"}
        };
 
        R["A"] = new List<List<string>>{
            new List<string>{"heavy"},
            new List<string>{"orange"},
            new List<string>{"tall"},
            new List<string>{"muscular"}
        };
 
        // Given String
        List<string> w = new List<string>{"a", "very", "heavy", "orange", "book"};
 
        // Function Call
        cykParse(w);
         
    }
}
 
// This code is contributed by subhamgoyal2014.


Javascript




// CYK Algorithm
 
// Non-terminal symbols
const terminals = ["book", "orange", "man",                   "tall", "heavy",                   "very", "muscular"];
 
const non_terminals = ["NP", "Nom", "Det", "AP",                       "Adv", "A"];
 
// Rules of the grammar
const R = {
  "NP": [["Det", "Nom"]],
  "Nom": [["AP", "Nom"], ["book"],
          ["orange"], ["man"]],
  "AP": [["Adv", "A"], ["heavy"],
         ["orange"], ["tall"]],
  "Det": [["a"]],
  "Adv": [["very"], ["extremely"]],
  "A": [["heavy"], ["orange"], ["tall"],
        ["muscular"]]
};
 
// function to perform the CYK Algorithm
function cykParse(w) {
  let n = w.length;
 
  // Initialize the table
  let T = [];
  for (let i = 0; i < n; i++) {
    T[i] = [];
    for (let j = 0; j < n; j++) {
      T[i][j] = new Set();
    }
  }
   
  // Filling in the table
  for (let j = 0; j < n; j++) {
    // Iterate over the rules
    for (let lhs in R) {
      let rule = R[lhs];
      for (let rhs of rule) {
        // If a terminal is found
        if (rhs.length == 1 && rhs[0] == w[j]) {
          T[j][j].add(lhs);
        }
      }
    }
    for (let i = j; i >= 0; i--) {
      // Iterate over the range from i to j
      for (let k = i; k <= j; k++) {
        // Iterate over the rules
        for (let lhs in R) {
          let rule = R[lhs];
          for (let rhs of rule) {
            // If a terminal is found
            if (rhs.length == 2 && T[i][k].has(rhs[0]) && T[k + 1][j].has(rhs[1])) {
              T[i][j].add(lhs);
            }
          }
        }
      }
    }
  }
 
  // If word can be formed by rules
  // of given grammar
  if (T[0][n - 1].size !== 0) {
    console.log("True");
  } else {
    console.log("False");
  }
}
 
// Given String
const w = ["a", "very", "heavy", "orange", "book"];
 
// Function Call
cykParse(w);


Output: 

True

 

Time Complexity: O(N3
Auxiliary Space:O(N2)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments