Co-prime or mutually prime pairs are those pairs of numbers whose GCD is 1. Given a number n represent the number as the sum of a Co-prime pair (A, B) such that A – B is minimum.
Examples :
Input : 12 Output : 5 7 Possible co-prime pairs are (5, 7), (1, 11) but difference between 5 and 7 is minimum Input : 13 Output : 6 7 Possible co-prime pairs are (6, 7), (5, 8), (4, 9), (3, 10), (2, 11) and (1, 12) but difference between 6 and 7 is minimum
A simple solution is to iterate through all numbers from 1 to n-1. For every number x, check if n – x and x are co-primes. If yes, then update the result if the difference between these two is less than the minimum difference so far.
An efficient solution is based on the fact that the numbers with a minimum difference should be close to n/2. We loop from n/2 to 1. Check every possible pair and when the first possible Co-prime pair is found display it and stop the loop.
C++
// CPP program to represent a number // as sum of a co-prime pair such that // difference between them is minimum #include <bits/stdc++.h> using namespace std; // function to check if pair // is co-prime or not bool coprime( int a, int b) { return (__gcd(a, b) == 1); } // function to find and print // co-prime pair void pairSum( int n){ int mid = n / 2; for ( int i = mid; i >= 1; i--) { if (coprime(i, n - i) == 1) { cout << i << " " << n - i; break ; } } } // driver code int main() { int n = 11; pairSum(n); return 0; } |
Java
// Java program to represent a // number as sum of a co-prime // pair such that difference // between them is minimum import java.io.*; public class GFG { static int __gcd( int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // function to check if pair // is co-prime or not static boolean coprime( int a, int b) { return (__gcd(a, b) == 1 ); } // function to find and // print co-prime pair static void pairSum( int n) { int mid = n / 2 ; for ( int i = mid; i >= 1 ; i--) { if (coprime(i, n - i) == true ) { System.out.print( i + " " + (n - i)); break ; } } } // Driver Code public static void main(String args[]) { int n = 11 ; pairSum(n); } } // This code is contributed by Sam007 |
Python3
# Python3 program to represent # a number as sum of a co-prime # pair such that difference # between them is minimum import math # function to check if pair # is co-prime or not def coprime(a, b): return 1 if (math.gcd(a, b) = = 1 ) else 0 ; # function to # find and print # co-prime pair def pairSum(n): mid = int (n / 2 ); i = mid; while (i > = 1 ): if (coprime(i, n - i) = = 1 ): print (i, n - i); break ; i = i - 1 ; # Driver code n = 11 ; pairSum(n); # This code is contributed # by mits |
C#
// C# program to represent a number // as sum of a co-prime pair such that // difference between them is minimum using System; class GFG { static int __gcd( int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // function to check if pair // is co-prime or not static bool coprime( int a, int b) { return (__gcd(a, b) == 1); } // function to find and print // co-prime pair static void pairSum( int n) { int mid = n / 2; for ( int i = mid; i >= 1; i--) { if (coprime(i, n - i) == true ) { Console.Write( i + " " + (n - i)); break ; } } } // Driver code public static void Main() { int n = 11; pairSum(n); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to represent // a number as sum of a // co-prime pair such that // difference between them // is minimum function gcd( $num1 , $num2 ) { /* finds the greatest common factor between two numbers */ while ( $num2 != 0) { $t = $num1 % $num2 ; $num1 = $num2 ; $num2 = $t ; } return $num1 ; } // function to check if pair // is co-prime or not function coprime( $a , $b ) { if (gcd( $a , $b ) == 1) return 1; else return 0; } // function to find and // print co-prime pair function pairSum( $n ) { $mid = (int)(( $n / 2)); for ( $i = $mid ; $i >= 1; $i --) { if (coprime( $i , $n - $i ) == 1) { echo $i . " " . ( $n - $i ); break ; } } } // Driver code $n = 11; pairSum( $n ); // This code is contributed // by mits ?> |
Javascript
<script> // Javascript program to represent a // number as sum of a co-prime // pair such that difference // between them is minimum function __gcd(a, b) { return b == 0 ? a : __gcd(b, a % b); } // function to check if pair // is co-prime or not function coprime(a, b) { return (__gcd(a, b) == 1); } // function to find and // print co-prime pair function pairSum(n) { let mid = Math.floor(n / 2); for (let i = mid; i >= 1; i--) { if (coprime(i, n - i) == true ) { document.write( i + " " + (n - i)); break ; } } } // Driver code let n = 11; pairSum(n); </script> |
5 6
Time Complexity: O(n*log(n))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!