Given an array arr[] of integers of size N, the task is to find the closest pair in the given array such that one element is the multiple of the other. If no such pair exists then print -1.
Note: Closest pair means the difference between the index of any two elements must be minimum.
Examples:
Input: arr[] = {2, 3, 4, 5, 6}
Output: 2 4
Explanation:Â
The only possible pairs are (2, 4), (2, 6), (3, 6) out of which the pair which have minimum distance between them is (2, 4).ÂInput: arr[] = { 2, 3, 6, 4, 5 }
Output: 3 6
Explanation:Â
The only possible pairs are (2, 4), (2, 6), (3, 6) out of which the pair which have minimum distance between them is (3, 6).
Approach: The idea is to generate all possible pairs of the given array and check if there exists any pair of elements in the array if one element is the multiple of other and update the required minimum distance with the current pair. After the above operation print, the pair have the minimum distance among them and one is a multiple of the other. If no such pair exists then print -1.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include<bits/stdc++.h> using namespace std;   // Function to find the minimum // distance pair where one is the // multiple of the other void findPair( int a[], int n) {     // Initialize the variables   int min_dist = INT_MAX;   int index_a = -1, index_b = -1; Â
  // Iterate for all the elements   for ( int i = 0; i < n; i++)   { Â
    // Loop to make pairs     for ( int j = i + 1; j < n; j++)     {         // Check if one is a         // multiple of other           // and have minimum distance         if ((a[i] % a[j] == 0 || a[j] % a[i] == 0) and j-i<min_dist)         { Â
          // Update the distance           min_dist = j - i; Â
          // Store indexes           index_a = i;           index_b = j;         }     }   } Â
  // If no such pair exists   if (index_a == -1)   {     cout << ( "-1" );   } Â
  // Print the answer   else   {     cout << "(" << a[index_a]        << ", " << a[index_b] << ")" ;   } } Â
// Driver Code int main() { Â Â // Given array arr[] Â Â int a[] = { 2, 3, 4, 5, 6 }; Â Â int n = sizeof (a)/ sizeof ( int ); Â
  // Function Call   findPair(a, n); } Â
// This code is contributed by rock_cool |
Java
// Java program for the above approach import java.util.*; class GFG { Â
    // Function to find the minimum     // distance pair where one is the     // multiple of the other     public static void     findPair( int a[], int n)     { Â
        // Initialize the variables         int min_dist = Integer.MAX_VALUE;         int index_a = - 1 , index_b = - 1 ; Â
        // Iterate for all the elements         for ( int i = 0 ; i < n; i++) { Â
            // Loop to make pairs             for ( int j = i + 1 ; j < n; j++) { Â
                    // Check if one is a                     // multiple of other                     if ((a[i] % a[j] == 0                         || a[j] % a[i] == 0 ) && j-i<min_dist) { Â
                        // Update the distance                         min_dist = j - i; Â
                        // Store indexes                         index_a = i;                         index_b = j;                     }             }         } Â
        // If no such pair exists         if (index_a == - 1 ) {             System.out.println( "-1" );         } Â
        // Print the answer         else {             System.out.print(                 "(" + a[index_a]                 + ", "                 + a[index_b] + ")" );         }     } Â
    // Driver Code     public static void         main(String[] args)     {         // Given array arr[]         int a[] = { 2 , 3 , 4 , 5 , 6 };         int n = a.length; Â
        // Function Call         findPair(a, n);     } } |
Python3
# Python3 program for the above approach import sys Â
# Function to find the minimum # distance pair where one is the # multiple of the other def findPair(a, n): Â
    # Initialize the variables     min_dist = sys.maxsize     index_a = - 1     index_b = - 1 Â
    # Iterate for all the elements     for i in range (n):                  # Loop to make pairs         for j in range (i + 1 , n): Â
          # Check if one is a           # multiple of other           if (((a[i] % a[j] = = 0 ) or               (a[j] % a[i] = = 0 )) and j - i<min_dist): Â
            # Update the distance             min_dist = j - i Â
            # Store indexes             index_a = i             index_b = j Â
    # If no such pair exists     if (index_a = = - 1 ):         print ( "-1" ) Â
    # Print the answer     else :         print ( "(" , a[index_a],              ", " , a[index_b], ")" ) Â
# Driver Code Â
# Given array arr[] a = [ 2 , 3 , 4 , 5 , 6 ] Â
n = len (a) Â
# Function call findPair(a, n) Â
# This code is contributed by sanjoy_62 |
C#
// C# program for the above approach using System; Â
class GFG{   // Function to find the minimum // distance pair where one is the // multiple of the other public static void findPair( int []a, int n) {          // Initialize the variables     int min_dist = int .MaxValue;     int index_a = -1, index_b = -1; Â
    // Iterate for all the elements     for ( int i = 0; i < n; i++)     {                  // Loop to make pairs         for ( int j = i + 1; j < n; j++)         { Â
            // Check if one is a             // multiple of other             if ((a[i] % a[j] == 0 ||                 a[j] % a[i] == 0) && j-i<min_dist)             { Â
              // Update the distance               min_dist = j - i; Â
              // Store indexes               index_a = i;               index_b = j;             }         }     } Â
    // If no such pair exists     if (index_a == -1)     {         Console.WriteLine( "-1" );     } Â
    // Print the answer     else     {         Console.Write( "(" + a[index_a] +                      ", " + a[index_b] + ")" );     } } Â
// Driver Code public static void Main(String[] args) {          // Given array []arr     int []a = { 2, 3, 4, 5, 6 };          int n = a.Length; Â
    // Function Call     findPair(a, n); } } Â
// This code is contributed by 29AjayKumar |
Javascript
<script> Â
// Javascript program for the above approach Â
// Function to find the minimum // distance pair where one is the // multiple of the other function findPair(a, n) { Â
    // Initialize the variables     let min_dist = Number.MAX_VALUE;     let index_a = -1, index_b = -1;          // Iterate for all the elements     for (let i = 0; i < n; i++)     {              // Loop to make pairs         for (let j = i + 1; j < n; j++)         {                                       // Check if one is a                 // multiple of other                 if ((a[i] % a[j] == 0 ||                     a[j] % a[i] == 0) && j-i<min_dist)                 {                                  // Update the distance                 min_dist = j - i;                                  // Store indexes                 index_a = i;                 index_b = j;                 }         }     }          // If no such pair exists     if (index_a == -1)     {         document.write( "-1" );     }          // Print the answer     else     {         document.write( "(" + a[index_a] +                       ", " + a[index_b] + ")" );     } } Â
// Driver code Â
// Given array arr[] let a = [ 2, 3, 4, 5, 6 ]; let n = a.length; Â
// Function Call findPair(a, n); Â Â Â Â Â // This code is contributed by divyesh072019 Â
</script> |
(2, 4)
Time Complexity: O(N2)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!