Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AIChoose points from two ranges such that no point lies in both...

Choose points from two ranges such that no point lies in both the ranges

Given two segments [L1, R1] and [L2, R2], the task is to choose two elements x and y from both the ranges (one from range one and other from range two) such that no element belongs to both the ranges i.e. x belongs to first range and y belongs to second range. If no such element exists then print -1 instead.

Examples: 

Input: L1 = 1, R1 = 6, L2 = 3, R2 = 11 
Output: 1 11 
1 lies only in range [1, 6] and 11 lies only in [3, 11]

Input: L1 = 5, R1 = 10, L2 = 1, R2 = 7 
Output: 1 10 
 

Approach:  

  • If L1 != L2 and R1 != R2 then the points will be min(L1, L2) and max(R1, R2).
  • Else only one point can be chosen from one of the ranges as one of the range is completely inside the other so we print -1 for that point.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the required points
void findPoints(int l1, int r1, int l2, int r2)
{
 
    int x = (l1 != l2) ? min(l1, l2) : -1;
    int y = (r1 != r2) ? max(r1, r2) : -1;
    cout << x << " " << y;
}
 
// Driver code
int main()
{
    int l1 = 5, r1 = 10, l2 = 1, r2 = 7;
    findPoints(l1, r1, l2, r2);
}


Java




// Java implementation of the approach
class GFG
{
     
// Function to find the required points
static void findPoints(int l1, int r1,
                       int l2, int r2)
{
 
    int x = (l1 != l2) ? Math.min(l1, l2) : -1;
    int y = (r1 != r2) ? Math.max(r1, r2) : -1;
    System.out.println(x + " " + y);
}
 
// Driver code
public static void main(String[] args)
{
    int l1 = 5, r1 = 10, l2 = 1, r2 = 7;
    findPoints(l1, r1, l2, r2);
}
}
 
// This code is contributed by Code_Mech


Python3




# Python3 implementation of the approach
 
# Function to find the required points
def findPoints(l1, r1, l2, r2):
 
    x = min(l1, l2) if(l1 != l2) else -1
    y = max(r1, r2) if(r1 != r2) else -1
    print(x, y)
 
# Driver code
if __name__ == "__main__":
     
    l1 = 5
    r1 = 10
    l2 = 1
    r2 = 7
    findPoints(l1, r1, l2, r2)
 
# This code is contributed by ita_c


C#




// C# implementation of the approach
using System;
 
class GFG
{
    // Function to find the required points
    static void findPoints(int l1, int r1,
                            int l2, int r2)
    {
        int x = (l1 != l2) ? Math.Min(l1, l2) : -1;
        int y = (r1 != r2) ? Math.Max(r1, r2) : -1;
        Console.WriteLine(x + " " + y);
    }
     
    // Driver code
    public static void Main()
    {
        int l1 = 5, r1 = 10, l2 = 1, r2 = 7;
        findPoints(l1, r1, l2, r2);
    }
}
 
// This code is contributed by Ryuga


PHP




<?php
// PHP implementation of the approach
 
// Function to find the required points
function findPoints($l1, $r1, $l2, $r2)
{
 
    $x = ($l1 != $l2) ? min($l1, $l2) : -1;
    $y = ($r1 != $r2) ? max($r1, $r2) : -1;
    echo $x , " " , $y;
}
 
// Driver code
$l1 = 5;
$r1 = 10;
$l2 = 1;
$r2 = 7;
findPoints($l1, $r1, $l2, $r2);
 
// This code is contributed by ajit
?>


Javascript




<script>
 
// Javascript implementation of the approach   
 
// Function to find the required points
function findPoints(l1 , r1 , l2 , r2)
{
    var x = (l1 != l2) ? Math.min(l1, l2) : -1;
    var y = (r1 != r2) ? Math.max(r1, r2) : -1;
    document.write(x + " " + y);
}
 
// Driver code
var l1 = 5, r1 = 10, l2 = 1, r2 = 7;
 
findPoints(l1, r1, l2, r2);
 
// This code is contributed by Rajput-Ji
 
</script>


Output: 

1 10

 

Time Complexity : O(1), since there is only a basic arithmetic operation that takes constant time.
Auxiliary Space : O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments