Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIChoose atleast two elements from array such that their GCD is 1...

Choose atleast two elements from array such that their GCD is 1 and cost is minimum

Given two integer arrays arr[] and cost[] where cost[i] is the cost of choosing arr[i]. The task is to choose a subset with at least two elements such that the GCD of all the elements from the subset is 1 and the cost of choosing those elements is as minimum as possible then print the minimum cost.

Examples: 

Input: arr[] = {5, 10, 12, 1}, cost[] = {2, 1, 2, 6} 
Output:
{5, 12} is the required subset with cost = 2 + 2 = 4

Input: arr[] = {50, 100, 150, 200, 300}, cost[] = {2, 3, 4, 5, 6} 
Output: -1 
No subset possible with gcd = 1 

Approach: Add GCD of any two elements to a map, now for every element arr[i] calculate its gcd with all the gcd values found so far (saved in the map) and update map[gcd] = min(map[gcd], map[gcd] + cost[i]). If in the end, map doesn’t contain any entry for gcd = 1 then print -1 else print the stored minimum cost.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum cost required
int getMinCost(int arr[], int n, int cost[])
{
 
    // Map to store <gcd, cost> pair where
    // cost is the cost to get the current gcd
    map<int, int> mp;
    mp.clear();
    mp[0] = 0;
 
    for (int i = 0; i < n; i++) {
        for (auto it : mp) {
            int gcd = __gcd(arr[i], it.first);
 
            // If current gcd value already exists in map
            if (mp.count(gcd) == 1)
 
                // Update the minimum cost
                // to get the current gcd
                mp[gcd] = min(mp[gcd], it.second + cost[i]);
 
            else
                mp[gcd] = it.second + cost[i];
        }
    }
 
    // If there can be no sub-set such that
    // the gcd of all the elements is 1
    if (mp[1] == 0)
        return -1;
    else
        return mp[1];
}
 
// Driver code
int main()
{
    int arr[] = { 5, 10, 12, 1 };
    int cost[] = { 2, 1, 2, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << getMinCost(arr, n, cost);
    return 0;
}


Java




// Java implementation of the approach
 
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
 
class GFG{
  
// Function to return the minimum cost required
static int getMinCost(int arr[], int n, int cost[])
{
  
    // Map to store <gcd, cost> pair where
    // cost is the cost to get the current gcd
    Map<Integer,Integer> mp = new ConcurrentHashMap<Integer,Integer>();
    mp.clear();
    mp.put(0, 0);
  
    for (int i = 0; i < n; i++) {
        for (Map.Entry<Integer,Integer> it : mp.entrySet()){
            int gcd = __gcd(arr[i], it.getKey());
  
            // If current gcd value already exists in map
            if (mp.containsKey(gcd))
  
                // Update the minimum cost
                // to get the current gcd
                mp.put(gcd, Math.min(mp.get(gcd), it.getValue() + cost[i]));
  
            else
                mp.put(gcd,it.getValue() + cost[i]);
        }
    }
  
    // If there can be no sub-set such that
    // the gcd of all the elements is 1
    if (!mp.containsKey(1))
        return -1;
    else
        return mp.get(1);
}
static int __gcd(int a, int b) 
    return b == 0? a:__gcd(b, a % b);    
}
// Driver code
public static void main(String[] args)
{
    int arr[] = { 5, 10, 12, 1 };
    int cost[] = { 2, 1, 2, 6 };
    int n = arr.length;
  
    System.out.print(getMinCost(arr, n, cost));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
from math import gcd as __gcd
 
# Function to return the minimum cost required
def getMinCost(arr, n, cost):
 
    # Map to store <gcd, cost> pair where
    # cost is the cost to get the current gcd
    mp = dict()
    mp[0] = 0
 
    for i in range(n):
        for it in list(mp):
            gcd = __gcd(arr[i], it)
 
            # If current gcd value
            # already exists in map
            if (gcd in mp):
 
                # Update the minimum cost
                # to get the current gcd
                mp[gcd] = min(mp[gcd],
                              mp[it] + cost[i])
 
            else:
                mp[gcd] = mp[it] + cost[i]
 
    # If there can be no sub-set such that
    # the gcd of all the elements is 1
    if (mp[1] == 0):
        return -1
    else:
        return mp[1]
 
# Driver code
arr = [ 5, 10, 12, 1]
cost = [ 2, 1, 2, 6]
n = len(arr)
 
print(getMinCost(arr, n, cost))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
using System.Linq;
class GFG
{
  static int __gcd(int a, int b)  
  {  
    return b == 0? a:__gcd(b, a % b);     
  }
 
  // Function to return the minimum cost required
  static int getMinCost(int[] arr, int n, int[] cost)
  {
 
    // Map to store <gcd, cost> pair where
    // cost is the cost to get the current gcd
    Dictionary<int, int> mp = new Dictionary<int, int>();
    mp.Add(0, 0);
    for (int i = 0; i < n; i++)
    {
 
      foreach (int it in mp.Keys.ToList())
      {
        int gcd = __gcd(arr[i], it);
 
        // If current gcd value already exists in map
        if(mp.ContainsKey(gcd))
        {
 
          // Update the minimum cost
          // to get the current gcd
          mp[gcd] = Math.Min(mp[gcd], mp[it] + cost[i]);
        }
        else
        {
          mp.Add(gcd, mp[it] + cost[i]);
        }
      
    }
 
    // If there can be no sub-set such that
    // the gcd of all the elements is 1
    if (mp[1] == 0)
    {
      return -1;
    }
    else
    {
      return mp[1];
    }       
  }
 
  // Driver code
  static public void Main ()
  {
    int[] arr = { 5, 10, 12, 1 };
    int[] cost = { 2, 1, 2, 6 };
    int n = arr.Length;
    Console.WriteLine(getMinCost(arr, n, cost));
  }
}
 
// This code is contributed by avanitrachhadiya2155


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the minimum cost required
function getMinCost(arr,n,cost)
{
    // Map to store <gcd, cost> pair where
    // cost is the cost to get the current gcd
    let mp = new Map();
     
    mp.set(0, 0);
   
    for (let i = 0; i < n; i++) {
        for (let [key, value] of mp.entries()){
            let gcd = __gcd(arr[i], key);
   
            // If current gcd value already exists in map
            if (mp.has(gcd))
   
                // Update the minimum cost
                // to get the current gcd
                mp.set(gcd, Math.min(mp.get(gcd), value + cost[i]));
   
            else
                mp.set(gcd,value + cost[i]);
        }
    }
   
    // If there can be no sub-set such that
    // the gcd of all the elements is 1
    if (!mp.has(1))
        return -1;
    else
        return mp.get(1);
}
 
function __gcd(a,b)
{
    return b == 0? a:__gcd(b, a % b);
}
 
// Driver code
let arr=[5, 10, 12, 1 ];
let cost=[2, 1, 2, 6 ];
let n = arr.length;
document.write(getMinCost(arr, n, cost));
 
 
// This code is contributed by unknown2108
 
</script>


Output

4

Complexity Analysis:

  • Time Complexity: O(n2 log(n)) where n is the number of elements.
  • Auxiliary Space: O(n) 
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments