Given two integer arrays arr[] and cost[] where cost[i] is the cost of choosing arr[i]. The task is to choose a subset with at least two elements such that the GCD of all the elements from the subset is 1 and the cost of choosing those elements is as minimum as possible then print the minimum cost.
Examples:
Input: arr[] = {5, 10, 12, 1}, cost[] = {2, 1, 2, 6}
Output: 4
{5, 12} is the required subset with cost = 2 + 2 = 4Input: arr[] = {50, 100, 150, 200, 300}, cost[] = {2, 3, 4, 5, 6}
Output: -1
No subset possible with gcd = 1
Approach: Add GCD of any two elements to a map, now for every element arr[i] calculate its gcd with all the gcd values found so far (saved in the map) and update map[gcd] = min(map[gcd], map[gcd] + cost[i]). If in the end, map doesn’t contain any entry for gcd = 1 then print -1 else print the stored minimum cost.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the minimum cost required int getMinCost( int arr[], int n, int cost[]) { // Map to store <gcd, cost> pair where // cost is the cost to get the current gcd map< int , int > mp; mp.clear(); mp[0] = 0; for ( int i = 0; i < n; i++) { for ( auto it : mp) { int gcd = __gcd(arr[i], it.first); // If current gcd value already exists in map if (mp.count(gcd) == 1) // Update the minimum cost // to get the current gcd mp[gcd] = min(mp[gcd], it.second + cost[i]); else mp[gcd] = it.second + cost[i]; } } // If there can be no sub-set such that // the gcd of all the elements is 1 if (mp[1] == 0) return -1; else return mp[1]; } // Driver code int main() { int arr[] = { 5, 10, 12, 1 }; int cost[] = { 2, 1, 2, 6 }; int n = sizeof (arr) / sizeof (arr[0]); cout << getMinCost(arr, n, cost); return 0; } |
Java
// Java implementation of the approach import java.util.*; import java.util.concurrent.ConcurrentHashMap; class GFG{ // Function to return the minimum cost required static int getMinCost( int arr[], int n, int cost[]) { // Map to store <gcd, cost> pair where // cost is the cost to get the current gcd Map<Integer,Integer> mp = new ConcurrentHashMap<Integer,Integer>(); mp.clear(); mp.put( 0 , 0 ); for ( int i = 0 ; i < n; i++) { for (Map.Entry<Integer,Integer> it : mp.entrySet()){ int gcd = __gcd(arr[i], it.getKey()); // If current gcd value already exists in map if (mp.containsKey(gcd)) // Update the minimum cost // to get the current gcd mp.put(gcd, Math.min(mp.get(gcd), it.getValue() + cost[i])); else mp.put(gcd,it.getValue() + cost[i]); } } // If there can be no sub-set such that // the gcd of all the elements is 1 if (!mp.containsKey( 1 )) return - 1 ; else return mp.get( 1 ); } static int __gcd( int a, int b) { return b == 0 ? a:__gcd(b, a % b); } // Driver code public static void main(String[] args) { int arr[] = { 5 , 10 , 12 , 1 }; int cost[] = { 2 , 1 , 2 , 6 }; int n = arr.length; System.out.print(getMinCost(arr, n, cost)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approach from math import gcd as __gcd # Function to return the minimum cost required def getMinCost(arr, n, cost): # Map to store <gcd, cost> pair where # cost is the cost to get the current gcd mp = dict () mp[ 0 ] = 0 for i in range (n): for it in list (mp): gcd = __gcd(arr[i], it) # If current gcd value # already exists in map if (gcd in mp): # Update the minimum cost # to get the current gcd mp[gcd] = min (mp[gcd], mp[it] + cost[i]) else : mp[gcd] = mp[it] + cost[i] # If there can be no sub-set such that # the gcd of all the elements is 1 if (mp[ 1 ] = = 0 ): return - 1 else : return mp[ 1 ] # Driver code arr = [ 5 , 10 , 12 , 1 ] cost = [ 2 , 1 , 2 , 6 ] n = len (arr) print (getMinCost(arr, n, cost)) # This code is contributed by Mohit Kumar |
C#
// C# implementation of the approach using System; using System.Collections.Generic; using System.Linq; class GFG { static int __gcd( int a, int b) { return b == 0? a:__gcd(b, a % b); } // Function to return the minimum cost required static int getMinCost( int [] arr, int n, int [] cost) { // Map to store <gcd, cost> pair where // cost is the cost to get the current gcd Dictionary< int , int > mp = new Dictionary< int , int >(); mp.Add(0, 0); for ( int i = 0; i < n; i++) { foreach ( int it in mp.Keys.ToList()) { int gcd = __gcd(arr[i], it); // If current gcd value already exists in map if (mp.ContainsKey(gcd)) { // Update the minimum cost // to get the current gcd mp[gcd] = Math.Min(mp[gcd], mp[it] + cost[i]); } else { mp.Add(gcd, mp[it] + cost[i]); } } } // If there can be no sub-set such that // the gcd of all the elements is 1 if (mp[1] == 0) { return -1; } else { return mp[1]; } } // Driver code static public void Main () { int [] arr = { 5, 10, 12, 1 }; int [] cost = { 2, 1, 2, 6 }; int n = arr.Length; Console.WriteLine(getMinCost(arr, n, cost)); } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // JavaScript implementation of the approach // Function to return the minimum cost required function getMinCost(arr,n,cost) { // Map to store <gcd, cost> pair where // cost is the cost to get the current gcd let mp = new Map(); mp.set(0, 0); for (let i = 0; i < n; i++) { for (let [key, value] of mp.entries()){ let gcd = __gcd(arr[i], key); // If current gcd value already exists in map if (mp.has(gcd)) // Update the minimum cost // to get the current gcd mp.set(gcd, Math.min(mp.get(gcd), value + cost[i])); else mp.set(gcd,value + cost[i]); } } // If there can be no sub-set such that // the gcd of all the elements is 1 if (!mp.has(1)) return -1; else return mp.get(1); } function __gcd(a,b) { return b == 0? a:__gcd(b, a % b); } // Driver code let arr=[5, 10, 12, 1 ]; let cost=[2, 1, 2, 6 ]; let n = arr.length; document.write(getMinCost(arr, n, cost)); // This code is contributed by unknown2108 </script> |
4
Complexity Analysis:
- Time Complexity: O(n2 log(n)) where n is the number of elements.
- Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!