Friday, January 10, 2025
Google search engine
HomeLanguagesCheck whether the sum of absolute difference of adjacent digits is Prime...

Check whether the sum of absolute difference of adjacent digits is Prime or not

Given a number a N and the task is to check whether the sum of absolute difference of adjacent digit is a prime or not.

Examples: 

Input: N = 142 
Output: Prime
Sum = |1-4| + |4-2| = 5 i.e. prime.
Input: N = 347
Output: Not prime

Approach: Find the sum of absolute difference of adjacent digits and then check if that sum is prime or not. 

Algorithm:

Step 1: Start
Step 2: Create a static function of boolean return type named “prime” which takes an integer value as input and checks if the                      number is prime or not.
             a. in the prime function there are conditions i.e if n==q returns false because 1 is not prime.
             b. start a for loop from i=2 to i*i < n and check if (n % i) == 0 then it is not prime if not then prime.
Step 3: Create a static function of boolean return type name it as “checkSumPrime” which takes a string value as input return if the              sum of the array is prime or not.
             a. initialize an int variable name as “summ” with 0.
             b. start a for loop from i=1 to the length of the string 
                  1. The variable summ should be updated to include the absolute difference between the i-th and (i-1)-th characters.
             c. check if summ is prime or not return if prime and false if not.
Step 4: End
Below is the implementation of the above approach:  

C++




// C++ implementation of the above approach
#include<bits/stdc++.h>
 
using namespace std;
 
 
// Function to check for a prime number
bool Prime(int n){
 
    if( n == 1){
        return false;
            }
    for (int i=2;i*i<=n;i++){
        if (n % i == 0)
            return false;
                    }
    return true;
}
 
// Function to find the sum of array
bool checkSumPrime(string st){
    int summ = 0;
    for (int i=1;i<st.size();i++)
        summ+= abs(st[i-1]-st[i]);
 
    if(Prime(summ))
        return true;
    else
        return false;
}
 
// Driver code
int main(){
 
    int num = 142;
 
    string s= "142";
 
    if (checkSumPrime(s))
        cout<<"Prime\n";
    else
        cout<<"Not Prime\n";
 
return 0;
 
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG
{
 
    // Function to check for a prime number
    static boolean Prime(int n)
    {
        if (n == 1)
            return false;
        for (int i = 2; i * i <= n; i++)
            if (n % i == 0)
                return false;
        return true;
    }
 
    // Function to find the sum of array
    static boolean checkSumPrime(String str)
    {
        int summ = 0;
        for (int i = 1; i < str.length(); i++)
            summ += Math.abs(str.charAt(i - 1) -
                             str.charAt(i));
 
        if (Prime(summ))
            return true;
        else
            return false;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int num = 142;
        String str = "142";
        if (checkSumPrime(str))
            System.out.println("Prime");
        else
            System.out.println("Not Prime");
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the above approach
import math as mt
 
# Function to check for a prime number
def Prime(n):
     
    if n == 1:
        return False
         
    for i in range(2, mt.ceil(mt.sqrt(n + 1))):
        if n % i == 0:
            return False
    return True
     
# Function to find the sum of array
def checkSumPrime(string):
    summ = 0
    for i in range(1, len(string)):
        summ += abs(int(string[i - 1]) -
                    int(string[i]))
         
    if Prime(summ):
        return True
    else:
        return False
 
# Driver code
num = 142
 
string = str(num)
 
s = [i for i in string]
 
if checkSumPrime(s):
    print("Prime")
else:
    print("Not Prime\n")
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the above approach
using System;
     
class GFG
{
 
    // Function to check for a prime number
    static bool Prime(int n)
    {
        if (n == 1)
            return false;
        for (int i = 2; i * i <= n; i++)
            if (n % i == 0)
                return false;
        return true;
    }
 
    // Function to find the sum of array
    static bool checkSumPrime(String str)
    {
        int summ = 0;
        for (int i = 1; i < str.Length; i++)
            summ += Math.Abs(str[i - 1] -
                             str[i]);
 
        if (Prime(summ))
            return true;
        else
            return false;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String str = "142";
        if (checkSumPrime(str))
            Console.WriteLine("Prime");
        else
            Console.WriteLine("Not Prime");
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to check for a prime number
function Prime(n)
{
    if (n == 1)
        return false;
         
    for(let i = 2; i * i <= n; i++)
        if (n % i == 0)
            return false;
             
    return true;
}
 
// Function to find the sum of array
function checkSumPrime(str)
{
    let summ = 0;
    for(let i = 1; i < str.length; i++)
        summ += Math.abs(str[i - 1]-
                         str[i]);
 
    if (Prime(summ))
        return true;
    else
        return false;
}
 
// Driver Code
let num = 142;
let str = "142";
 
if (checkSumPrime(str))
    document.write("Prime");
else
    document.write("Not Prime");
     
// This code is contributed by unknown2108
 
</script>


Output

Prime





Time Complexity: O(sum1/2), where the sum is the sum of the digits of the number

Auxiliary Space: O(1)

METHOD 2 :Using re module

APPRAOCH:

The code checks whether the sum of the absolute difference between adjacent digits in a number is a prime number or not.

ALGORITHM:

1.Convert the input number to a list of its digits.
2.Calculate the sum of the absolute difference between adjacent digits in the list.
3.Check if the sum is a prime number using a separate function is_prime.
4.Return True if the sum is prime, False otherwise.

C++




#include <iostream>
#include <cmath>
#include <regex>
using namespace std;
 
bool is_prime(int n) {
    if (n < 2) {
        return false;
    }
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}
 
bool is_prime_sum_adjacent_digits(int n) {
    string numStr = to_string(n);
    regex digitsRegex("\\d");
    smatch match;
    vector<int> digits;
 
    while (regex_search(numStr, match, digitsRegex)) {
        digits.push_back(stoi(match.str()));
        numStr = match.suffix();
    }
 
    int diffSum = 0;
    for (int i = 0; i < digits.size() - 1; i++) {
        diffSum += abs(digits[i] - digits[i+1]);
    }
 
    return is_prime(diffSum);
}
 
int main() {
    int n = 142;
    if (is_prime_sum_adjacent_digits(n)) {
        cout << "Prime" << endl;
    } else {
        cout << "Not prime" << endl;
    }
 
    n = 347;
    if (is_prime_sum_adjacent_digits(n)) {
        cout << "Prime" << endl;
    } else {
        cout << "Not prime" << endl;
    }
 
    return 0;
}


Java




/*package whatever //do not write package name here */
import java.util.regex.Matcher;
import java.util.regex.Pattern;
 
public class GFG {
 
    public static boolean isPrime(int n)
    {
        if (n < 2) {
            return false;
        }
        for (int i = 2; i <= Math.sqrt(n); i++) {
            if (n % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    public static boolean isPrimeSumAdjacentDigits(int n)
    {
        String nString = Integer.toString(n);
        Matcher matcher
            = Pattern.compile("\\d").matcher(nString);
        int[] digits = new int[nString.length()];
        int i = 0;
        while (matcher.find()) {
            digits[i++] = Integer.parseInt(matcher.group());
        }
        int diffSum = 0;
        for (int j = 0; j < digits.length - 1; j++) {
            diffSum += Math.abs(digits[j] - digits[j + 1]);
        }
        return isPrime(diffSum);
    }
 
    public static void main(String[] args)
    {
        int n = 142;
        if (isPrimeSumAdjacentDigits(n)) {
            System.out.println("Prime");
        }
        else {
            System.out.println("Not prime");
        }
        n = 347;
        if (isPrimeSumAdjacentDigits(n)) {
            System.out.println("Prime");
        }
        else {
            System.out.println("Not prime");
        }
    }
}


Python3




import re
 
def is_prime(n):
    if n < 2:
        return False
    for i in range(2, int(n**0.5)+1):
        if n % i == 0:
            return False
    return True
 
def is_prime_sum_adjacent_digits(n):
    digits = [int(d) for d in re.findall('\d', str(n))]
    diff_sum = sum(abs(digits[i] - digits[i+1]) for i in range(len(digits)-1))
    return is_prime(diff_sum)
 
# Example usage:
n = 142
if is_prime_sum_adjacent_digits(n):
    print("Prime")
else:
    print("Not prime")
n = 347
if is_prime_sum_adjacent_digits(n):
    print("Prime")
else:
    print("Not prime")


C#




using System;
using System.Text.RegularExpressions;
 
class GFG
{
    // Function to check if a number is prime
    public static bool IsPrime(int n)
    {
        if (n < 2)
        {
            return false;
        }
        for (int i = 2; i <= Math.Sqrt(n); i++)
        {
            if (n % i == 0)
            {
                return false;
            }
        }
        return true;
    }
 
    // Function to check if the sum of adjacent digits'
   // differences is prime
    public static bool IsPrimeSumAdjacentDigits(int n)
    {
        // Convert the number to a string to extract individual digits
        string nString = n.ToString();
        // Use regular expression to find all individual digits
        MatchCollection matches = Regex.Matches(nString, @"\d");
        // Create an array to store the extracted digits
        int[] digits = new int[nString.Length];
        int i = 0;
        // Convert the matched digits back to integers and store
       // them in the array
        foreach (Match match in matches)
        {
            digits[i++] = int.Parse(match.Value);
        }
 
        // Calculate the sum of absolute differences between
       // adjacent digits
        int diffSum = 0;
        for (int j = 0; j < digits.Length - 1; j++)
        {
            diffSum += Math.Abs(digits[j] - digits[j + 1]);
        }
 
        // Check if the sum of differences is prime using
       // the IsPrime function
        return IsPrime(diffSum);
    }
 
    public static void Main(string[] args)
    {
        int n = 142;
        // Check if the sum of adjacent digits' differences is
       // prime for the number 142
        if (IsPrimeSumAdjacentDigits(n))
        {
            Console.WriteLine("Prime");
        }
        else
        {
            Console.WriteLine("Not prime");
        }
 
        n = 347;
        // Check if the sum of adjacent digits' differences is
       // prime for the number 347
        if (IsPrimeSumAdjacentDigits(n))
        {
            Console.WriteLine("Prime");
        }
        else
        {
            Console.WriteLine("Not prime");
        }
    }
}


Javascript




function isPrime(n) {
    if (n < 2) {
        return false;
    }
    for (let i = 2; i <= Math.sqrt(n); i++) {
        if (n % i === 0) {
            return false;
        }
    }
    return true;
}
 
function isPrimeSumAdjacentDigits(n) {
    const nString = n.toString();
    const digits = nString.split('').map(Number);
    let diffSum = 0;
    for (let j = 0; j < digits.length - 1; j++) {
        diffSum += Math.abs(digits[j] - digits[j + 1]);
    }
    return isPrime(diffSum);
}
 
// Test cases
let n = 142;
if (isPrimeSumAdjacentDigits(n)) {
    console.log("Prime");
} else {
    console.log("Not prime");
}
 
n = 347;
if (isPrimeSumAdjacentDigits(n)) {
    console.log("Prime");
} else {
    console.log("Not prime");
}


Output

Prime
Not prime





Time complexity is O(log n * sqrt(n)).

Space complexity: The code uses a list to store the digits of the input number, which takes O(log n) space, where n is the input number.

Approach:

1. We include the necessary headers and declare functions to generate a prime sieve, check if a number is prime, calculate the sum of absolute differences of adjacent digits, and check if a sum is prime.
2. In the `main` function, we generate the prime sieve up to the maximum possible sum based on the number of digits in the input number.
3. We calculate the sum of absolute differences of adjacent digits in the input number.
4. Using the prime sieve, we check if the calculated sum is prime.
5. Based on the result, we output whether the sum is prime or not.

C++




#include <iostream>
#include <vector>
 
using namespace std;
 
// Function to generate the prime sieve
vector<bool> generateSieve(int limit) {
    vector<bool> sieve(limit + 1, true);
    sieve[0] = sieve[1] = false;
 
    for (int p = 2; p * p <= limit; ++p) {
        if (sieve[p]) {
            for (int i = p * p; i <= limit; i += p) {
                sieve[i] = false;
            }
        }
    }
 
    return sieve;
}
 
// Function to check if a number is prime
bool isPrime(int n, const vector<bool>& sieve) {
    return sieve[n];
}
 
// Function to calculate the sum of absolute differences of adjacent digits
int calculateSumOfAbsoluteDifferences(int N) {
    int sum = 0;
    int prevDigit = N % 10;
    N /= 10;
 
    while (N > 0) {
        int currDigit = N % 10;
        sum += abs(currDigit - prevDigit);
        prevDigit = currDigit;
        N /= 10;
    }
 
    return sum;
}
 
// Function to check if the sum is prime or not
bool isSumPrime(int sum, const vector<bool>& sieve) {
    return isPrime(sum, sieve);
}
 
int main() {
    int N = 142;
 
    // Generate sieve of primes up to the maximum possible sum
    int maxSum = 9 * (to_string(N).length() - 1);
    vector<bool> sieve = generateSieve(maxSum);
 
    // Calculate the sum of absolute differences
    int sum = calculateSumOfAbsoluteDifferences(N);
 
    // Check if the sum is prime or not
    bool isPrimeSum = isSumPrime(sum, sieve);
 
    if (isPrimeSum) {
        cout << "Prime" << endl;
    } else {
        cout << "Not Prime" << endl;
    }
 
    return 0;
}


Output

Prime





Time Complexity:

Generating the prime sieve using the Sieve of Eratosthenes algorithm takes O(N log log N), where N is the maximum possible sum of absolute differences. This is because we iterate up to the square root of N to mark the multiples of prime numbers.

Auxiliary Space:

The space complexity is primarily determined by the size of the prime sieve, which is O(N), where N is the maximum possible sum of absolute differences.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
You’ll access excellent video content by our CEO, Sandeep Jain, tackle common interview questions, and engage in real-time coding contests covering various DSA topics. We’re here to prepare you thoroughly for online assessments and interviews.
Ready to dive in? Explore our free demo content and join our DSA course, trusted by over 100,000neveropen! Whether it’s DSA in C++, Java, Python, or JavaScript we’ve got you covered. Let’s embark on this exciting journey together!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments