Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICheck whether the given number is Euclid Number or not

Check whether the given number is Euclid Number or not

Given a positive integer n, the task is to check if it is Euclid Number or not. Print ‘YES’ if the given number is Euclid Number otherwise print ‘NO’.

Euclid number : In Mathematics, Euclid numbers are integers of the form – E_{n} = p_{n}\# + 1
where p_{n}\#        is product of first n prime numbers.
The first few Euclid numbers are- 

3, 7, 31, 211, 2311, 30031, 510511, 9699691, ……….

Example:  

Input: N = 31
Output: YES
31 can be expressed in the form of 
pn# + 1 as p3# + 1
(First 3 prime numbers are 2, 3, 5 and their product is 30 )

Input: N = 43
Output: NO
43 cannot be expressed in the form of pn# + 1

Naive Approach:  

  1. Generate all prime number in the range using Sieve of Eratosthenes.
  2. Then starting from first prime (i.e 2 ) start multiplying next prime number and keep checking if product + 1 = n .
  3. If the product + 1 = n then, n is Euclid number. Otherwise not.

Below is the implementation of above approach: 

C++




// CPP program to check Euclid Number
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 10000
 
vector<int> arr;
 
// Function to generate prime numbers
void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    bool prime[MAX];
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed, then it is a prime
 
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store all prime numbers
    // to vector 'arr'
    for (int p = 2; p < MAX; p++)
        if (prime[p])
            arr.push_back(p);
}
 
// Function to check the number for Euclid Number
bool isEuclid(long n)
{
 
    long long product = 1;
    int i = 0;
 
    while (product < n) {
 
        // Multiply next prime number
        // and check if product + 1 = n
        // holds or not
        product = product * arr[i];
 
        if (product + 1 == n)
            return true;
 
        i++;
    }
 
    return false;
}
 
// Driver code
int main()
{
 
    // Get the prime numbers
    SieveOfEratosthenes();
 
    // Get n
    long n = 31;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        cout << "YES\n";
    else
        cout << "NO\n";
 
    // Get n
    n = 42;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        cout << "YES\n";
    else
        cout << "NO\n";
 
    return 0;
}


Java




// Java program to check Euclid Number
 
import java.util.*;
 
class GFG {
 
    static final int MAX = 10000;
    static Vector<Integer> arr = new Vector<Integer>();
 
    // Function to get the prime numbers
    static void SieveOfEratosthenes()
    {
        // Create a boolean array "prime[0..n]" and initialize
        // all entries it as true. A value in prime[i] will
        // finally be false if i is Not a prime, else true.
        boolean[] prime = new boolean[MAX];
 
        for (int i = 0; i < MAX; i++)
            prime[i] = true;
 
        for (int p = 2; p * p < MAX; p++) {
 
            // If prime[p] is not changed, then it is a prime
            if (prime[p] == true) {
 
                // Update all multiples of p
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
 
        // store all prime numbers
        // to vector 'arr'
        for (int p = 2; p < MAX; p++)
            if (prime[p])
                arr.add(p);
    }
 
    // Function to check the number for Euclid Number
    static boolean isEuclid(long n)
    {
 
        long product = 1;
        int i = 0;
        while (product < n) {
 
            // Multiply next prime number
            // and check if product + 1 = n
            // holds or not
            product = product * arr.get(i);
 
            if (product + 1 == n)
                return true;
 
            i++;
        }
 
        return false;
    }
    public static void main(String[] args)
    {
 
        // Get the prime numbers
        SieveOfEratosthenes();
 
        // Get n
        long n = 31;
 
        // Check if n is Euclid Number
        if (isEuclid(n))
            System.out.println("YES");
        else
            System.out.println("NO");
 
        // Get n
        n = 42;
 
        // Check if n is Euclid Number
        if (isEuclid(n))
            System.out.println("YES");
        else
            System.out.println("NO");
    }
}


Python3




# Python 3 program to check
# Euclid Number
MAX = 10000
 
arr = []
 
# Function to generate prime numbers
def SieveOfEratosthenes():
 
    # Create a boolean array "prime[0..n]"
    # and initialize all entries it as
    # true. A value in prime[i] will
    # finally be false if i is Not a
    # prime, else true.
    prime = [True] * MAX
 
    p = 2
    while p * p < MAX :
         
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
 
            # Update all multiples of p
            for i in range(p * 2, MAX, p):
                prime[i] = False
                 
        p += 1
 
    # store all prime numbers
    # to vector 'arr'
    for p in range(2, MAX):
        if (prime[p]):
            arr.append(p)
 
# Function to check the number
# for Euclid Number
def isEuclid(n):
 
    product = 1
    i = 0
 
    while (product < n) :
 
        # Multiply next prime number
        # and check if product + 1 = n
        # holds or not
        product = product * arr[i]
 
        if (product + 1 == n):
            return True
 
        i += 1
 
    return False
 
# Driver code
if __name__ == "__main__":
 
    # Get the prime numbers
    SieveOfEratosthenes()
 
    # Get n
    n = 31
 
    # Check if n is Euclid Number
    if (isEuclid(n)):
        print("YES")
    else:
        print("NO")
 
    # Get n
    n = 42
 
    # Check if n is Euclid Number
    if (isEuclid(n)):
        print("YES")
    else:
        print("NO")
 
# This code is contributed
# by ChitraNayal


C#




// C# program to check Euclid Number
using System;
using System.Collections.Generic;
 
class GFG
{
 
    static readonly int MAX = 10000;
    static List<int> arr = new List<int>();
 
    // Function to get the prime numbers
    static void SieveOfEratosthenes()
    {
        // Create a boolean array
        // "prime[0..n]" and initialize
        // all entries it as true.
        // A value in prime[i] will
        // finally be false if i is
        // Not a prime, else true.
        bool[] prime = new bool[MAX];
 
        for (int i = 0; i < MAX; i++)
            prime[i] = true;
 
        for (int p = 2; p * p < MAX; p++)
        {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true)
            {
 
                // Update all multiples of p
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
 
        // store all prime numbers
        // to vector 'arr'
        for (int p = 2; p < MAX; p++)
            if (prime[p])
                arr.Add(p);
    }
 
    // Function to check the number for Euclid Number
    static bool isEuclid(long n)
    {
 
        long product = 1;
        int i = 0;
        while (product < n)
        {
 
            // Multiply next prime number
            // and check if product + 1 = n
            // holds or not
            product = product * arr[i];
 
            if (product + 1 == n)
                return true;
 
            i++;
        }
 
        return false;
    }
     
    // Driver code
    public static void Main(String[] args)
    {
 
        // Get the prime numbers
        SieveOfEratosthenes();
 
        // Get n
        long n = 31;
 
        // Check if n is Euclid Number
        if (isEuclid(n))
            Console.WriteLine("YES");
        else
            Console.WriteLine("NO");
 
        // Get n
        n = 42;
 
        // Check if n is Euclid Number
        if (isEuclid(n))
            Console.WriteLine("YES");
        else
            Console.WriteLine("NO");
    }
}
 
// This code has been contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program to check Euclid Number
var MAX = 10000;
var arr = [];
 
// Function to generate prime numbers
function SieveOfEratosthenes()
{
 
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    var prime = Array(MAX).fill(true);;
 
    for (var p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed, then it is a prime
 
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (var i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store all prime numbers
    // to vector 'arr'
    for (var p = 2; p < MAX; p++)
        if (prime[p])
            arr.push(p);
}
 
// Function to check the number for Euclid Number
function isEuclid( n)
{
 
    var product = 1;
    var i = 0;
 
    while (product < n) {
 
        // Multiply next prime number
        // and check if product + 1 = n
        // holds or not
        product = product * arr[i];
 
        if (product + 1 == n)
            return true;
 
        i++;
    }
 
    return false;
}
 
// Driver code
 
// Get the prime numbers
SieveOfEratosthenes();
 
// Get n
var n = 31;
 
// Check if n is Euclid Number
if (isEuclid(n))
    document.write("YES<br>");
else
    document.write("NO<br>");
     
// Get n
n = 42;
 
// Check if n is Euclid Number
if (isEuclid(n))
    document.write("YES<br>");
else
    document.write("NO<br>");
 
// This code is contributed by itsok.
</script>


Output: 

YES
NO

 

Note: Above approach will take O(Pn#) for each query (for every N) i.e. no. of prime numbers to be multiplied to check if n is Euclid number or not.

Auxiliary Space: O(n)

Efficient Approach: 

  1. Generate all prime number in the range using Sieve of Eratosthenes.
  2. Compute prefix product of prime numbers up to a range to avoid re-calculating the product using hash table.
  3. If the product + 1 = n then, n is Euclid number. Otherwise not.

Below is the implementation of above approach: 

C++




// CPP program to check Euclid Number
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 10000
 
unordered_set<long long int> s;
 
// Function to generate the Prime numbers
// and store their products
void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    bool prime[MAX];
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed, then it is a prime
 
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store prefix product of prime numbers
    // to unordered_set 's'
    long long int product = 1;
 
    for (int p = 2; p < MAX; p++) {
 
        if (prime[p]) {
 
            // update product by multiplying
            // next prime
            product = product * p;
 
            // insert 'product+1' to set
            s.insert(product + 1);
        }
    }
}
 
// Function to check the number for Euclid Number
bool isEuclid(long n)
{
 
    // Check if number exist in
    // unordered set or not
    // If exist, return true
    if (s.find(n) != s.end())
        return true;
    else
        return false;
}
 
// Driver code
int main()
{
 
    // Get the prime numbers
    SieveOfEratosthenes();
 
    // Get n
    long n = 31;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        cout << "YES\n";
    else
        cout << "NO\n";
 
    // Get n
    n = 42;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        cout << "YES\n";
    else
        cout << "NO\n";
 
    return 0;
}


Java




// Java program to check Euclid Number
import java.util.*;
 
class GFG
{
static int MAX = 10000;
 
static HashSet<Integer> s = new HashSet<Integer>();
 
// Function to generate the Prime numbers
// and store their products
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    boolean []prime = new boolean[MAX];
    Arrays.fill(prime, true);
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store prefix product of prime numbers
    // to unordered_set 's'
    int product = 1;
 
    for (int p = 2; p < MAX; p++)
    {
        if (prime[p])
        {
 
            // update product by multiplying
            // next prime
            product = product * p;
 
            // insert 'product+1' to set
            s.add(product + 1);
        }
    }
}
 
// Function to check the number for Euclid Number
static boolean isEuclid(int n)
{
 
    // Check if number exist in
    // unordered set or not
    // If exist, return true
    if (s.contains(n))
        return true;
    else
        return false;
}
 
// Driver code
public static void main(String[] args)
{
    // Get the prime numbers
    SieveOfEratosthenes();
 
    // Get n
    int n = 31;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        System.out.println("Yes");
    else
        System.out.println("No");
 
    // Get n
    n = 42;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 program to check Euclid Number
MAX = 10000
 
s = set()
 
# Function to generate the Prime numbers
# and store their products
def SieveOfEratosthenes():
 
    # Create a boolean array "prime[0..n]"
    # and initialize all entries it as true.
    # A value in prime[i] will finally be
    # false if i is Not a prime, else true.
    prime = [True] * (MAX)
    prime[0], prime[1] = False, False
     
    for p in range(2, 100):
         
        # If prime[p] is not changed,
        # then it is a prime
        if prime[p] == True:
 
            # Update all multiples of p
            for i in range(p * 2, MAX, p):
                prime[i] = False
 
    # store prefix product of prime numbers
    # to unordered_set 's'
    product = 1
 
    for p in range(2, MAX):
 
        if prime[p] == True:
 
            # update product by multiplying
            # next prime
            product = product * p
 
            # insert 'product+1' to set
            s.add(product + 1)
 
# Function to check the number
# for Euclid Number
def isEuclid(n):
 
    # Check if number exist in
    # unordered set or not
    # If exist, return true
    if n in s:
        return True
    else:
        return False
 
# Driver code
if __name__ == "__main__":
 
    # Get the prime numbers
    SieveOfEratosthenes()
 
    # Get n
    n = 31
 
    # Check if n is Euclid Number
    if isEuclid(n) == True:
        print("YES")
    else:
        print("NO")
 
    # Get n
    n = 42
 
    # Check if n is Euclid Number
    if isEuclid(n) == True:
        print("YES")
    else:
        print("NO")
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
     
class GFG
{
static int MAX = 10000;
static HashSet<int> s = new HashSet<int>();
 
// Function to generate the Prime numbers
// and store their products
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    Boolean []prime = new Boolean[MAX];
    for (int p = 0; p < MAX; p++)
        prime[p] = true;
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store prefix product of prime numbers
    // to unordered_set 's'
    int product = 1;
 
    for (int p = 2; p < MAX; p++)
    {
        if (prime[p])
        {
 
            // update product by multiplying
            // next prime
            product = product * p;
 
            // insert 'product+1' to set
            s.Add(product + 1);
        }
    }
}
 
// Function to check the number
// for Euclid Number
static Boolean isEuclid(int n)
{
 
    // Check if number exist in
    // unordered set or not
    // If exist, return true
    if (s.Contains(n))
        return true;
    else
        return false;
}
 
// Driver code
public static void Main(String[] args)
{
    // Get the prime numbers
    SieveOfEratosthenes();
 
    // Get n
    int n = 31;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
 
    // Get n
    n = 42;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// Javascript program to check Euclid Number
     
let MAX = 10000;
let s = new Set();
 
// Function to generate the Prime numbers
// and store their products
function SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    let prime = new Array(MAX);
    for(let i=0;i<prime.length;i++)
    {
        prime[i]=true;
    }
     
    prime[0] = false;
    prime[1] = false;
    for (let p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
  
            // Update all multiples of p
            for (let i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
  
    // store prefix product of prime numbers
    // to unordered_set 's'
    let product = 1;
  
    for (let p = 2; p < MAX; p++)
    {
        if (prime[p])
        {
  
            // update product by multiplying
            // next prime
            product = product * p;
  
            // insert 'product+1' to set
            s.add(product + 1);
        }
    }
}
 
// Function to check the number for Euclid Number
function isEuclid(n)
{
    // Check if number exist in
    // unordered set or not
    // If exist, return true
    if (s.has(n))
        return true;
    else
        return false;
}
 
// Driver code
 
// Get the prime numbers
SieveOfEratosthenes();   
 
// Get n
let n = 31;
 
// Check if n is Euclid Number
if (isEuclid(n))
    document.write("Yes<br>");
else
    document.write("No<br>");
 
// Get n
n = 42;
 
// Check if n is Euclid Number
if (isEuclid(n))
    document.write("Yes<br>");
else
    document.write("No<br>");
     
 
// This code is contributed by avanitrachhadiya2155
</script>


Output: 

YES
NO

 

Note: Above approach will take O(1) time to answer a query.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments