Friday, January 10, 2025
Google search engine
HomeData Modelling & AICheck whether the exchange is possible or not

Check whether the exchange is possible or not

Given N types of money denomination in a country as an array arr[]. A person and the shopkeeper can choose notes of each denomination any number of times. The task is to check whether the exchange is possible when the person wants to buy a product worth P from the shop.
Examples: 
 

Input: arr[] = {6, 9}, P = 3 
Output: Yes 
The person can pay 9 and get 6 in return.
Input: arr[] = {6, 9}, P = 4 
Output: No 
 

 

Approach: In order for the exchange to be possible, P must be divisible by the GCD of all the denominations. So, find the gcd of the array elements and check whether P is divisible by it or not.
Below is the implementation of the approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if
// the exchange is possible
bool isPossible(int arr[], int n, int p)
{
 
    // Find the GCD of the array elements
    int gcd = 0;
    for (int i = 0; i < n; i++)
        gcd = __gcd(gcd, arr[i]);
 
    // If the exchange is possible
    if (p % gcd == 0)
        return true;
 
    return false;
}
 
// Driver code
int main()
{
    int arr[] = { 6, 9 };
    int n = sizeof(arr) / sizeof(int);
    int p = 3;
 
    if (isPossible(arr, n, p))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Recursive function to
    // return gcd of a and b
    static int __gcd(int a, int b)
    {
        if (b == 0)
            return a;
        return __gcd(b, a % b);
    }
     
    // Function that returns true if
    // the exchange is possible
    static boolean isPossible(int []arr,
                              int n, int p)
    {
     
        // Find the GCD of the array elements
        int gcd = 0;
        for (int i = 0; i < n; i++)
            gcd = __gcd(gcd, arr[i]);
     
        // If the exchange is possible
        if (p % gcd == 0)
            return true;
     
        return false;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 6, 9 };
        int n = arr.length;
        int p = 3;
     
        if (isPossible(arr, n, p))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
from math import gcd as __gcd
 
# Function that returns true if
# the exchange is possible
def isPossible(arr, n, p) :
 
    # Find the GCD of the array elements
    gcd = 0;
    for i in range(n) :
        gcd = __gcd(gcd, arr[i]);
 
    # If the exchange is possible
    if (p % gcd == 0) :
        return True;
 
    return False;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 6, 9 ];
    n = len(arr);
    p = 3;
 
    if (isPossible(arr, n, p)) :
        print("Yes");
    else :
        print("No");
         
# This code is contributed by kanugargng


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Recursive function to
    // return gcd of a and b
    static int __gcd(int a, int b)
    {
        if (b == 0)
            return a;
        return __gcd(b, a % b);
    }
     
    // Function that returns true if
    // the exchange is possible
    static bool isPossible(int []arr,
                           int n, int p)
    {
     
        // Find the GCD of the array elements
        int gcd = 0;
        for (int i = 0; i < n; i++)
            gcd = __gcd(gcd, arr[i]);
     
        // If the exchange is possible
        if (p % gcd == 0)
            return true;
     
        return false;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int []arr = { 6, 9 };
        int n = arr.Length;
        int p = 3;
     
        if (isPossible(arr, n, p))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
    // JavaScript implementation of the approach
     
    // Recursive function to
    // return gcd of a and b
    function __gcd(a, b)
    {
        if (b == 0)
            return a;
        return __gcd(b, a % b);
    }
       
    // Function that returns true if
    // the exchange is possible
    function isPossible(arr, n, p)
    {
       
        // Find the GCD of the array elements
        let gcd = 0;
        for (let i = 0; i < n; i++)
            gcd = __gcd(gcd, arr[i]);
       
        // If the exchange is possible
        if (p % gcd == 0)
            return true;
       
        return false;
    }
     
    let arr = [ 6, 9 ];
    let n = arr.length;
    let p = 3;
 
    if (isPossible(arr, n, p))
      document.write("Yes");
    else
      document.write("No");
 
</script>


Output: 

Yes

 

Time Complexity: O(n * min(a, b)), where a and b are two parameters of _gcd

Auxiliary Space: O(min(a, b))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
01 Mar, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments