Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck whether all the bits are unset in the given range

Check whether all the bits are unset in the given range

Given a non-negative number n and two values l and r. The problem is to check whether all the bits are unset or not in the range l to r in the binary representation of n. The bits are numbered from right to left, i.e., the least significant bit is considered to be at first position. 
Constraint: 1 <= l <= r <= number of bits in the binary representation of n.

Examples: 

Input : n = 17, l = 2, r = 4
Output : Yes
(17)10 = (10001)2
The bits in the range 2 to 4 are all unset.

Input : n = 39, l = 4, r = 6
Output : No
(39)10 = (100111)2
The bits in the range 4 to 6 are all not unset.

Approach: Following are the steps:
 

  1. Calculate num = ((1 << r) – 1) ^ ((1 << (l-1)) – 1). This will produce a number num having r number of bits and bits in the range l to r are the only set bits.
  2. Calculate new_num = n & num.
  3. If new_num == 0, return “Yes” (all bits are unset in the given range).
  4. Else return “No” (all bits are not unset in the given range).

 

C++




// C++ implementation to check whether all the bits
// are unset in the given range or not
#include <bits/stdc++.h>
 
using namespace std;
 
// function to check whether all the bits
// are unset in the given range or not
bool allBitsSetInTheGivenRange(unsigned int n,
                               unsigned int l, unsigned int r)
{
    // calculating a number 'num' having 'r'
    // number of bits and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
 
    // new number which could only have one or more
    // set bits in the range l to r and nowhere else
    int new_num = n & num;
 
    // if true, then all bits are unset
    // in the given range
    if (new_num == 0)
        return true;
 
    // else all bits are not unset
    // in the given range
    return false;
}
 
// Driver program to test above
int main()
{
    unsigned int n = 17;
    unsigned int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}


Java




// Java implementation to check
// whether all the bits are
// unset in the given range or not
class GFG
{
     
// function to check whether
// all the bits are unset in
// the given range or not
static boolean allBitsSetInTheGivenRange(int n,
                                         int l,
                                         int r)
{
    // calculating a number 'num'
    // having 'r' number of bits
    // and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^
              ((1 << (l - 1)) - 1);
 
    // new number which could only
    // have one or more set bits in
    // the range l to r and nowhere else
    int new_num = n & num;
 
    // if true, then all bits are
    // unset in the given range
    if (new_num == 0)
        return true;
 
    // else all bits are not
    // unset in the given range
    return false;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 17;
    int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed
// by Smitha


Python3




# Python3 implementation to
# check whether all the bits
# are unset in the given
# range or not
 
# function to check whether
# all the bits are unset in
# the given range or not
def allBitsSetInTheGivenRange(n, l, r):
 
    # calculating a number 'num'
    # having 'r' number of bits
    # and bits in the range l
    # to r are the only set bits
    num = (((1 << r) - 1) ^
           ((1 << (l - 1)) - 1))
 
    # new number which could only
    # have one or more set bits in
    # the range l to r and nowhere else
    new_num = n & num
 
    # if true, then all bits are
    # unset in the given range
    if (new_num == 0):
        return True
 
    # else all bits are not
    # unset in the given range
    return false
 
# Driver Code
n = 17
l = 2
r = 4
if (allBitsSetInTheGivenRange(n, l, r)):
    print("Yes")
else:
    print("No")
 
# This code is contributed
# by Smitha


C#




// C# implementation to check
// whether all the bits are
// unset in the given range or not
using System;
 
class GFG
{
     
// function to check whether
// all the bits are unset in
// the given range or not
static bool allBitsSetInTheGivenRange(int n,
                                      int l,
                                      int r)
{
    // calculating a number 'num'
    // having 'r' number of bits
    // and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^
              ((1 << (l - 1)) - 1);
 
    // new number which could 
    // only have one or more
    // set bits in the range
    // l to r and nowhere else
    int new_num = n & num;
 
    // if true, then all
    // bits are unset
    // in the given range
    if (new_num == 0)
        return true;
 
    // else all bits are not
    // unset in the given range
    return false;
}
 
// Driver Code
public static void Main()
{
    int n = 17;
    int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed
// by Smitha


PHP




<?php
// PHP implementation to check
// whether all the bits are
// unset in the given range or not
 
// function to check whether
// all the bits are unset in
// the given range or not
function allBitsSetInTheGivenRange($n, $l, $r)
{
    // calculating a number 'num'
    // having 'r' number of bits
    // and bits in the range l
    // to r are the only set bits
    $num = ((1 << $r) - 1) ^
           ((1 << ($l - 1)) - 1);
 
    // new number which could only
    // have one or more set bits in
    // the range l to r and nowhere else
    $new_num = $n & $num;
 
    // if true, then all bits are
    // unset in the given range
    if ($new_num == 0)
        return true;
 
    // else all bits are not unset
    // in the given range
    return false;
}
 
// Driver Code
$n = 17;
$l = 2;
$r = 4;
if (allBitsSetInTheGivenRange($n, $l, $r))
    echo "Yes";
else
    echo "No";
     
// This code is contributed by Smitha
?>


Javascript




<script>
 
// Javascript implementation to
// check whether all the bits
// are unset in the given range or not
 
// function to check whether all the bits
// are unset in the given range or not
function allBitsSetInTheGivenRange(n, l, r)
{
    // calculating a number 'num' having 'r'
    // number of bits and bits in the range l
    // to r are the only set bits
    let num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
 
    // new number which could only have one or more
    // set bits in the range l to r and nowhere else
    let new_num = n & num;
 
    // if true, then all bits are unset
    // in the given range
    if (new_num == 0)
        return true;
 
    // else all bits are not unset
    // in the given range
    return false;
}
 
// Driver program to test above
    let n = 17;
    let l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        document.write("Yes");
    else
        document.write("No");
 
</script>


Output:  

Yes

Time complexity: O(1) since constant bit operations are done
Auxiliary space: O(1)

Last Updated :
30 Sep, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments