Given two integers N and K, the task is to check whether N can be represented as sum of K distinct positive integers.
Examples:
Input: N = 12, K = 4
Output: Yes
N = 1 + 2 + 4 + 5 = 12 (12 as sum of 4 distinct integers)Input: N = 8, K = 4
Output: No
Approach: Consider the series 1 + 2 + 3 + … + K which has exactly K distinct integers with minimum possible sum i.e. Sum = (K * (K – 1)) / 2. Now, if N < Sum then it is not possible to represent N as the sum of K distinct positive integers but if N ≥ Sum then any integer say X ≥ 0 can be added to Sum to generate the sum equal to N i.e. 1 + 2 + 3 + … + (K – 1) + (K + X) ensuring that there are exactly K distinct positive integers.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <iostream> using namespace std; // Function that returns true if n // can be represented as the sum of // exactly k distinct positive integers bool solve( int n, int k) { // If n can be represented as // 1 + 2 + 3 + ... + (k - 1) + (k + x) if (n >= (k * (k + 1)) / 2) { return true ; } return false ; } // Driver code int main() { int n = 12, k = 4; if (solve(n, k)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java implementation of the approach import java.io.*; class GFG { // Function that returns true if n // can be represented as the sum of // exactly k distinct positive integers static boolean solve( int n, int k) { // If n can be represented as // 1 + 2 + 3 + ... + (k - 1) + (k + x) if (n >= (k * (k + 1 )) / 2 ) { return true ; } return false ; } // Driver code public static void main(String[] args) { int n = 12 , k = 4 ; if (solve(n, k)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by anuj_67.. |
Python3
# Python 3 implementation of the approach # Function that returns true if n # can be represented as the sum of # exactly k distinct positive integers def solve(n,k): # If n can be represented as # 1 + 2 + 3 + ... + (k - 1) + (k + x) if (n > = (k * (k + 1 )) / / 2 ): return True return False # Driver code if __name__ = = '__main__' : n = 12 k = 4 if (solve(n, k)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; class GFG { // Function that returns true if n // can be represented as the sum of // exactly k distinct positive integers static bool solve( int n, int k) { // If n can be represented as // 1 + 2 + 3 + ... + (k - 1) + (k + x) if (n >= (k * (k + 1)) / 2) { return true ; } return false ; } // Driver code static public void Main () { int n = 12, k = 4; if (solve(n, k)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by ajit. |
Javascript
<script> // Javascript implementation of the approach // Function that returns true if n // can be represented as the sum of // exactly k distinct positive integers function solve(n, k) { // If n can be represented as // 1 + 2 + 3 + ... + (k - 1) + (k + x) if (n >= (k * (k + 1)) / 2) { return true ; } return false ; } // Driver code var n = 12, k = 4; if (solve(n, k)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by todaysgaurav </script> |
PHP
<?php // PHP implementation of the approach // Function that returns true if n // can be represented as the sum of // exactly k distinct positive integers function solve( $n , $k ) { // If n can be represented as // 1 + 2 + 3 + ... + (k - 1) + (k + x) if ( $n >= ( $k * ( $k + 1)) / 2) { return true; } return false; } // Driver code $n = 12; $k = 4; if (solve( $n , $k )) echo "Yes" ; else echo "No" ; // This code is contributed by ihritik ?> |
Yes
Time Complexity: O(1)
Auxiliary Space: O(1)
Approach 2: Dynamic Programming:
Here’s the dynamic programming (DP) approach to solve the same problem:
- Define a 2D array dp of size (n+1) x (k+1).
- Initialize dp[i][j] to false if either i is 0 or j is 0, and to true if j is 1.
- For i from 1 to n and j from 2 to k, do the following steps:
- a. If i >= j, then set dp[i][j] to dp[i-1][j] || dp[i-j][j-1].
- b. If i < j, then set dp[i][j] to dp[i-1][j].
- If dp[n][k] is true, return true, else return false.
- Here’s the C++ code for the above DP approach:
C++
#include <iostream> #include <vector> using namespace std; bool canSumToDistinctIntegers( int n, int k) { vector<vector< bool >> dp(n+1, vector< bool >(k+1, false )); for ( int i = 0; i <= n; i++) { dp[i][0] = false ; } for ( int j = 0; j <= k; j++) { dp[0][j] = false ; } for ( int j = 1; j <= k; j++) { dp[1][j] = true ; } for ( int i = 1; i <= n; i++) { for ( int j = 2; j <= k; j++) { if (i >= j) { dp[i][j] = dp[i-1][j] || dp[i-j][j-1]; } else { dp[i][j] = dp[i-1][j]; } } } return dp[n][k]; } int main() { int n = 12, k = 4; if (canSumToDistinctIntegers(n, k)) { cout << "Yes" << endl; } else { cout << "No" << endl; } return 0; } |
Java
public class GFG { public static boolean canSumToDistinctIntegers( int n, int k) { // Create a 2D DP array to store the results of subproblems boolean [][] dp = new boolean [n + 1 ][k + 1 ]; // Initialize base cases for ( int i = 0 ; i <= n; i++) { dp[i][ 0 ] = false ; } for ( int j = 0 ; j <= k; j++) { dp[ 0 ][j] = false ; } for ( int j = 1 ; j <= k; j++) { dp[ 1 ][j] = true ; } // Fill the DP array bottom-up for ( int i = 1 ; i <= n; i++) { for ( int j = 2 ; j <= k; j++) { if (i >= j) { dp[i][j] = dp[i - 1 ][j] || dp[i - j][j - 1 ]; } else { dp[i][j] = dp[i - 1 ][j]; } } } return dp[n][k]; } public static void main(String[] args) { int n = 12 , k = 4 ; // Check if it is possible to form a sum of k distinct integers if (canSumToDistinctIntegers(n, k)) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } } } |
Python3
def can_sum_to_distinct_integers(n, k): # Create a 2D DP table with n+1 rows and k+1 columns, initialized with False values dp = [[ False ] * (k + 1 ) for _ in range (n + 1 )] # Base case: If k is 0, it is always possible to form an empty set, so set dp[i][0] to True for all i. for i in range (n + 1 ): dp[i][ 0 ] = False # Base case: If n is 0, it is not possible to form a set with any sum, so set dp[0][j] to False for all j. for j in range (k + 1 ): dp[ 0 ][j] = False # Base case: If k is 1, it is always possible to form a set with just one element equal to n, # so set dp[1][j] to True for all j. for j in range ( 1 , k + 1 ): dp[ 1 ][j] = True # Fill the DP table using bottom-up approach for i in range ( 1 , n + 1 ): for j in range ( 2 , k + 1 ): if i > = j: # If the current number i is greater than or equal to j, # we have two options: include i or exclude i to form the sum j. # dp[i-1][j] represents excluding i, and dp[i-j][j-1] represents including i. dp[i][j] = dp[i - 1 ][j] or dp[i - j][j - 1 ] else : # If the current number i is less than j, we can only exclude i to form the sum j. dp[i][j] = dp[i - 1 ][j] # The final result is stored in dp[n][k], which represents whether it is possible to form a set of k distinct integers # whose sum is n. return dp[n][k] # Driver code n = 12 k = 4 if can_sum_to_distinct_integers(n, k): print ( "YES" ) else : print ( "No" ) |
C#
using System; public class GFG { public static bool CanSumToDistinctIntegers( int n, int k) { // Create a 2D DP array to store the results of subproblems bool [,] dp = new bool [n + 1, k + 1]; // Initialize base cases for ( int i = 0; i <= n; i++) { dp[i, 0] = false ; } for ( int j = 0; j <= k; j++) { dp[0, j] = false ; } for ( int j = 1; j <= k; j++) { dp[1, j] = true ; } // Fill the DP array bottom-up for ( int i = 1; i <= n; i++) { for ( int j = 2; j <= k; j++) { if (i >= j) { dp[i, j] = dp[i - 1, j] || dp[i - j, j - 1]; } else { dp[i, j] = dp[i - 1, j]; } } } return dp[n, k]; } public static void Main() { int n = 12, k = 4; // Check if it is possible to form a sum of k distinct integers if (CanSumToDistinctIntegers(n, k)) { Console.WriteLine( "Yes" ); } else { Console.WriteLine( "No" ); } // To pause the console before exiting Console.ReadLine(); } } |
Javascript
// This function determines if it is possible to represent a given integer n // as the sum of k distinct positive integers function canSumToDistinctIntegers(n, k) { // Create a 2D array to store the DP table, with n+1 rows and k+1 columns let dp = new Array(n+1); for (let i = 0; i <= n; i++) { dp[i] = new Array(k+1).fill( false ); } // Set base cases for (let i = 0; i <= n; i++) { dp[i][0] = false ; } for (let j = 0; j <= k; j++) { dp[0][j] = false ; } for (let j = 1; j <= k; j++) { dp[1][j] = true ; } // Fill in the DP table using a nested loop for (let i = 1; i <= n; i++) { for (let j = 2; j <= k; j++) { if (i >= j) { dp[i][j] = dp[i-1][j] || dp[i-j][j-1]; } else { dp[i][j] = dp[i-1][j]; } } } // Return the result, which is stored in the last cell of the DP table return dp[n][k]; } // Test the function with some sample input let n = 12, k = 4; if (canSumToDistinctIntegers(n, k)) { console.log( "Yes" ); } else { console.log( "No" ); } |
Output:
Yes
Time Complexity: O(nk), where n is the maximum possible value of n (the input number), and k is the maximum possible value of k
Auxiliary Space: O(nk) because we need to store the intermediate results in a 2D array.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!