Friday, January 3, 2025
Google search engine
HomeData Modelling & AICheck whether a node is leaf node or not for multiple queries

Check whether a node is leaf node or not for multiple queries

Given a tree with N vertices numbered from 0 to N – 1 where 0 is the root node. The task is to check if a node is leaf node or not for multiple queries.
Examples: 
 

Input:
       0
     /   \
   1      2
 /  \
3    4 
    /
  5
q[] = {0, 3, 4, 5}
Output:
No
Yes
No
Yes
From the graph, 2, 3 and 5 are the only leaf nodes.

 

Approach: Store the degree of all the vertices in an array degree[]. For each edge from A to B, degree[A] and degree[B] are incremented by 1. Now every node which not a root node and it has a degree of 1 is a leaf node and all the other nodes are not.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the degree of all the vertices
void init(int degree[], vector<pair<int, int> > edges, int n)
{
    // Initializing degree of all the vertices as 0
    for (int i = 0; i < n; i++) {
        degree[i] = 0;
    }
 
    // For each edge from A to B, degree[A] and degree[B]
    // are increased by 1
    for (int i = 0; i < edges.size(); i++) {
        degree[edges[i].first]++;
        degree[edges[i].second]++;
    }
}
 
// Function to perform the queries
void performQueries(vector<pair<int, int> > edges,
                    vector<int> q, int n)
{
    // To store the of degree
    // of all the vertices
    int degree[n];
 
    // Calculate the degree for all the vertices
    init(degree, edges, n);
 
    // For every query
    for (int i = 0; i < q.size(); i++) {
 
        int node = q[i];
        if (node == 0) {
            cout << "No\n";
            continue;
        }
        // If the current node has 1 degree
        if (degree[node] == 1)
            cout << "Yes\n";
        else
            cout << "No\n";
    }
}
 
// Driver code
int main()
{
 
    // Number of vertices
    int n = 6;
 
    // Edges of the tree
    vector<pair<int, int> > edges = {
        { 0, 1 }, { 0, 2 }, { 1, 3 }, { 1, 4 }, { 4, 5 }
    };
 
    // Queries
    vector<int> q = { 0, 3, 4, 5 };
 
    // Perform the queries
    performQueries(edges, q, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to calculate the degree
// of all the vertices
static void init(int degree[],
                     pair[] edges, int n)
{
    // Initializing degree of
    // all the vertices as 0
    for (int i = 0; i < n; i++)
    {
        degree[i] = 0;
    }
 
    // For each edge from A to B,
    // degree[A] and degree[B]
    // are increased by 1
    for (int i = 0; i < edges.length; i++)
    {
        degree[edges[i].first]++;
        degree[edges[i].second]++;
    }
}
 
// Function to perform the queries
static void performQueries(pair [] edges,
                           int []q, int n)
{
    // To store the of degree
    // of all the vertices
    int []degree = new int[n];
 
    // Calculate the degree for all the vertices
    init(degree, edges, n);
 
    // For every query
    for (int i = 0; i < q.length; i++)
    {
 
        int node = q[i];
        if (node == 0)
        {
            System.out.println("No");
            continue;
        }
         
        // If the current node has 1 degree
        if (degree[node] == 1)
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
 
// Driver code
public static void main(String[] args)
{
    // Number of vertices
    int n = 6;
 
    // Edges of the tree
    pair[] edges = {new pair(0, 1),
                    new pair(0, 2),
                    new pair(1, 3),
                    new pair(1, 4),
                    new pair(4, 5)};
 
    // Queries
    int []q = { 0, 3, 4, 5 };
 
    // Perform the queries
    performQueries(edges, q, n);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
# Function to calculate the degree
# of all the vertices
def init(degree, edges, n) :
 
    # Initializing degree of
    # all the vertices as 0
    for i in range(n) :
        degree[i] = 0;
 
    # For each edge from A to B,
    # degree[A] and degree[B]
    # are increased by 1
    for i in range(len(edges)) :
        degree[edges[i][0]] += 1;
        degree[edges[i][1]] += 1;
 
# Function to perform the queries
def performQueries(edges, q, n) :
 
    # To store the of degree
    # of all the vertices
    degree = [0] * n;
 
    # Calculate the degree for all the vertices
    init(degree, edges, n);
 
    # For every query
    for i in range(len(q)) :
 
        node = q[i];
        if (node == 0) :
            print("No");
            continue;
 
        # If the current node has 1 degree
        if (degree[node] == 1) :
            print("Yes");
        else :
            print("No");
 
# Driver code
if __name__ == "__main__" :
 
    # Number of vertices
    n = 6;
 
    # Edges of the tree
    edges = [[ 0, 1 ], [ 0, 2 ],
             [ 1, 3 ], [ 1, 4 ],
             [ 4, 5 ]];
 
    # Queries
    q = [ 0, 3, 4, 5 ];
 
    # Perform the queries
    performQueries(edges, q, n);
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
                     
class GFG
{
public class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to calculate the degree
// of all the vertices
static void init(int []degree,
                 pair[] edges, int n)
{
    // Initializing degree of
    // all the vertices as 0
    for (int i = 0; i < n; i++)
    {
        degree[i] = 0;
    }
 
    // For each edge from A to B,
    // degree[A] and degree[B]
    // are increased by 1
    for (int i = 0; i < edges.Length; i++)
    {
        degree[edges[i].first]++;
        degree[edges[i].second]++;
    }
}
 
// Function to perform the queries
static void performQueries(pair [] edges,
                            int []q, int n)
{
    // To store the of degree
    // of all the vertices
    int []degree = new int[n];
 
    // Calculate the degree for all the vertices
    init(degree, edges, n);
 
    // For every query
    for (int i = 0; i < q.Length; i++)
    {
 
        int node = q[i];
        if (node == 0)
        {
            Console.WriteLine("No");
            continue;
        }
         
        // If the current node has 1 degree
        if (degree[node] == 1)
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    // Number of vertices
    int n = 6;
 
    // Edges of the tree
    pair[] edges = {new pair(0, 1),
                    new pair(0, 2),
                    new pair(1, 3),
                    new pair(1, 4),
                    new pair(4, 5)};
 
    // Queries
    int []q = { 0, 3, 4, 5 };
 
    // Perform the queries
    performQueries(edges, q, n);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to calculate the degree of all the vertices
function init(degree, edges, n)
{
    // Initializing degree of all the vertices as 0
    for (var i = 0; i < n; i++) {
        degree[i] = 0;
    }
 
    // For each edge from A to B, degree[A] and degree[B]
    // are increased by 1
    for (var i = 0; i < edges.length; i++) {
        degree[edges[i][0]]++;
        degree[edges[i][1]]++;
    }
}
 
// Function to perform the queries
function performQueries( edges, q, n)
{
    // To store the of degree
    // of all the vertices
    var degree = Array(n);
 
    // Calculate the degree for all the vertices
    init(degree, edges, n);
 
    // For every query
    for (var i = 0; i < q.length; i++) {
 
        var node = q[i];
        if (node == 0) {
            document.write( "No<br>");
            continue;
        }
        // If the current node has 1 degree
        if (degree[node] == 1)
            document.write( "Yes<br>");
        else
            document.write( "No<br>");
    }
}
 
// Driver code
// Number of vertices
var n = 6;
// Edges of the tree
var edges = [
    [ 0, 1 ], [ 0, 2 ], [ 1, 3 ], [ 1, 4 ], [ 4, 5 ]
];
// Queries
var q = [ 0, 3, 4, 5 ];
// Perform the queries
performQueries(edges, q, n);
 
</script>


Output: 

No
Yes
No
Yes

 

Time complexity: O(n)
Auxiliary Space: O(n). 
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments