Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck whether a large number represented as array is divisible by Y

Check whether a large number represented as array is divisible by Y

Given a large integer X represented as an array arr[] where each arr[i] stores a digit in X. The task is to check whether the number represented by the array is divisible by given integer Y.
Examples: 
 

Input: arr[] = {1, 2, 1, 5, 6}, Y = 4 
Output: Yes 
12156 / 4 = 3039
Input: arr[] = {1, 1, 1, 1, 1, 1, 1, 1, 1}, Y = 14 
Output: No 
 

 

Approach: Start traversing the digits of the given number from the left and take the largest number which is smaller than or equal to Y and divide it with Y. If the remainder is something other than 0 then it will be carried to the next possible number formed from the remaining digits just like in the long division. After the complete number is processed, if the remainder is still something other than 0 then the represented number is not divisible by Y else it is.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function that returns true if the number represented
// by the given array is divisible by y
bool isDivisible(int* arr, int n, int y)
{
    int d = 0, i = 0;
 
    // While there are digits left
    while (i < n) {
 
        // Select the next part of the number
        // i.e. the maximum number which is <= y
        while (d < y && i < n)
            d = d * 10 + arr[i++];
 
        // Get the current remainder
        d = d % y;
    }
 
    // If the final remainder is 0
    if (d == 0)
        return true;
    return false;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 1, 5, 6 };
    int x = sizeof(arr) / sizeof(int);
    int y = 4;
 
    cout << (isDivisible(arr, x, y) ? "Yes" : "No");
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function that returns true if the number represented
    // by the given array is divisible by y
    static boolean isDivisible(int [] arr, int n, int y)
    {
        int d = 0, i = 0;
     
        // While there are digits left
        while (i < n)
        {
     
            // Select the next part of the number
            // i.e. the maximum number which is <= y
            while (d < y && i < n)
                d = d * 10 + arr[i++];
     
            // Get the current remainder
            d = d % y;
        }
     
        // If the final remainder is 0
        if (d == 0)
            return true;
        return false;
    }
     
    // Driver code
    public static void main (String[] args)
    {
         
        int [] arr = { 1, 2, 1, 5, 6 };
        int x = arr.length;
        int y = 4;
     
        System.out.println(isDivisible(arr, x, y) ? "Yes" : "No");
    }
}
 
// This code is contributed by ihritik


Python3




# Python3 implementation of the approach
 
# Function that returns true if the number represented
# by the given array is divisible by y
def isDivisible(arr, n, y):
    d, i = 0, 0
     
    # While there are digits left
    while i < n:
         
        # Select the next part of the number
        # i.e. the maximum number which is <= y
        while d < y and i < n:
            d = d * 10 + arr[i]
            i += 1
         
        # Get the current remainder
        d = d % y
         
    # If the final remainder is 0
    if d == 0:
        return True
    return False
 
# Driver code
if __name__ == "__main__":
    arr = [ 1, 2, 1, 5, 6 ]
    x = len(arr)
    y = 4
    if (isDivisible(arr, x, y)):
        print("Yes")
    else:
        print("No")
     
# This code is contributed by
# sanjeev2552


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function that returns true if the number represented
    // by the given array is divisible by y
    static bool isDivisible(int [] arr, int n, int y)
    {
        int d = 0, i = 0;
     
        // While there are digits left
        while (i < n)
        {
     
            // Select the next part of the number
            // i.e. the maximum number which is <= y
            while (d < y && i < n)
                d = d * 10 + arr[i++];
     
            // Get the current remainder
            d = d % y;
        }
     
        // If the final remainder is 0
        if (d == 0)
            return true;
        return false;
    }
     
    // Driver code
    public static void Main ()
    {
         
        int [] arr = { 1, 2, 1, 5, 6 };
        int x = arr.Length;
        int y = 4;
     
        Console.WriteLine(isDivisible(arr, x, y) ? "Yes" : "No");
    }
}
 
// This code is contributed by ihritik


Javascript




<script>
 
// JavaScript implementation of the approach
 
     
// Function that returns true if the number represented
// by the given array is divisible by y
function isDivisible(vararr , n , y)
{
    var d = 0, i = 0;
 
    // While there are digits left
    while (i < n)
    {
 
        // Select the next part of the number
        // i.e. the maximum number which is <= y
        while (d < y && i < n)
            d = d * 10 + arr[i++];
 
        // Get the current remainder
        d = d % y;
    }
 
    // If the final remainder is 0
    if (d == 0)
        return true;
    return false;
}
 
// Driver code
var  arr = [ 1, 2, 1, 5, 6 ];
var x = arr.length;
var y = 4;
 
document.write(isDivisible(arr, x, y) ? "Yes" : "No");
 
 
// This code is contributed by 29AjayKumar
 
</script>


Output: 

Yes

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments