Friday, September 5, 2025
HomeData Modelling & AICheck if the product of every contiguous subsequence is different or not...

Check if the product of every contiguous subsequence is different or not in a number

Given an integer N, the task is to check if the product of every consecutive set of digits is distinct or not.

Examples: 

Input: N = 234 
Output: Yes 
 

Set Product
{2} 2
{2, 3} 2 * 3 = 6
{2, 3, 4} 2 * 3 * 4 = 24
{3} 3
{3, 4} 3 * 4 = 12
{4} 4

All the products are distinct.

Input: N = 1234 
Output: No 
Set {1, 2} and {2} both the same product i.e. 2. 
 

Approach: Store the product of digits of every contiguous subsequence in a set. If the product to be inserted is already present in the set at any point then the answer is “No” else all the product are distinct in the end.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if the product
// of every digit of a contiguous subsequence
// is distinct
bool productsDistinct(int N)
{
    // To store the given number as a string
    string s = "";
 
    // Append all the digits
    // starting from the end
    while (N) {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
 
    // Reverse the string to get
    // the  original number
    reverse(s.begin(), s.end());
 
    // Store size of the string
    int sz = s.size();
 
    // Set to store product of
    // each contiguous subsequence
    set<int> se;
 
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++) {
        int product = 1;
        for (int j = i; j < sz; j++) {
            product *= (int)(s[j] - '0');
 
            // If current product already
            // exists in the set
            if (se.find(product) != se.end())
                return false;
            else
                se.insert(product);
        }
    }
 
    return true;
}
 
// Driver code
int main()
{
    int N = 2345;
 
    if (productsDistinct(N))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function that returns true if
// the product of every digit of a
// contiguous subsequence is distinct
static boolean productsDistinct(int N)
{
     
    // To store the given number
    // as a string
    String s = "";
 
    // Append all the digits
    // starting from the end
    while (N > 0)
    {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
 
    // Reverse the string to get
    // the original number
    s = reverse(s);
 
    // Store size of the string
    int sz = s.length();
 
    // Set to store product of
    // each contiguous subsequence
    HashSet<Integer> se = new HashSet<Integer>();
 
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++)
    {
        int product = 1;
        for (int j = i; j < sz; j++)
        {
            product *= (int)(s.charAt(j) - '0');
 
            // If current product already
            // exists in the set
            if (se.contains(product))
                return false;
            else
                se.add(product);
        }
    }
    return true;
}
 
static String reverse(String input)
{
    char[] a = input.toCharArray();
    int l, r;
    r = a.length - 1;
    for (l = 0; l < r; l++, r--)
    {
        // Swap values of l and r
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.valueOf(a);
}
 
// Driver code
public static void main(String[] args)
{
    int N = 2345;
 
    if (productsDistinct(N))
        System.out.println("Yes");
    else
        System.out.println("No");
    }
}
 
// This code is contributed
// by PrinciRaj1992


Python3




# Python 3 implementation of the approach
 
# Function that returns true if the product
# of every digit of a contiguous subsequence
# is distinct
 
 
def productsDistinct(A):
    A = str(A)
    n = len(A)
    hs = set()
    for i in range(n):
        prod = 1
        for j in range(i, n):
            prod = prod * int(A[j])
            if(prod in hs):
                return False
            else:
                hs.add(prod)
    return True
 
 
# Driver code
if __name__ == '__main__':
    N = 2345
 
    if (productsDistinct(N)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function that returns true if
// the product of every digit of a
// contiguous subsequence is distinct
static Boolean productsDistinct(int N)
{
     
    // To store the given number
    // as a string
    String s = "";
 
    // Append all the digits
    // starting from the end
    while (N > 0)
    {
        s += (char)(N % 10 + '0');
        N /= 10;
    }
 
    // Reverse the string to get
    // the original number
    s = reverse(s);
 
    // Store size of the string
    int sz = s.Length;
 
    // Set to store product of
    // each contiguous subsequence
    HashSet<int> se = new HashSet<int>();
 
    // Find product of every
    // contiguous subsequence
    for (int i = 0; i < sz; i++)
    {
        int product = 1;
        for (int j = i; j < sz; j++)
        {
            product *= (int)(s[j] - '0');
 
            // If current product already
            // exists in the set
            if (se.Contains(product))
                return false;
            else
                se.Add(product);
        }
    }
    return true;
}
 
static String reverse(String input)
{
    char[] a = input.ToCharArray();
    int l, r;
    r = a.Length - 1;
    for (l = 0; l < r; l++, r--)
    {
        // Swap values of l and r
        char temp = a[l];
        a[l] = a[r];
        a[r] = temp;
    }
    return String.Join("",a);
}
 
// Driver code
public static void Main(String[] args)
{
    int N = 2345;
 
    if (productsDistinct(N))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true if the product
// of every digit of a contiguous subsequence
// is distinct
// Javascript implementation of the approach
 
// Function that returns true if the product
// of every digit of a contiguous subsequence
// is distinct
function productsDistinct(N) {
  // To store the given number as a string
  const s = N.toString();
 
  // Store size of the string
  const sz = s.length;
 
  // Set to store product of
  // each contiguous subsequence
  const products = new Set();
 
  // Find product of every
  // contiguous subsequence
  for (let i = 0; i < sz; i++) {
    let product = 1;
    for (let j = i; j < sz; j++) {
      product *= Number(s[j]);
 
      // If current product already exists in the set
      if (products.has(product)) return false;
      else products.add(product);
    }
  }
  return true;
}
 
// Driver code
const N = 2345;
if (productsDistinct(N))
    document.write("Yes");
else
    document.write("No");
 
</script>


Output: 

Yes

 

Time Complexity: O((log10N)2*log(log10N))

Auxiliary Space: O((log10N)2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32269 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6636 POSTS0 COMMENTS
Nicole Veronica
11802 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11865 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7026 POSTS0 COMMENTS
Thapelo Manthata
6703 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS