Given a number N, the task is to check whether the number is divisible by 43 or not.
Examples:
Input: N = 2795
Output: yes
Explanation:
43 * 65 = 2795
Input: N = 11094
Output: yes
Explanation:
43 * 258 = 11094
Approach: The divisibility test of 43 is:
- Extract the last digit.
- Add 13 * last digit from the remaining number obtained after removing the last digit.
- Repeat the above steps until a two-digit number, or zero, is obtained.
- If the two-digit number is divisible by 43, or it is 0, then the original number is also divisible by 43.
For example:
If N = 11739 Step 1: N = 11739 Last digit = 9 Remaining number = 1173 Adding 13 times last digit Resultant number = 1173 + 13*9 = 1290 Step 2: N = 1290 Since 129 is divisible by 43 as 43 * 3 = 129 Therefore N = 11739 is also divisible by 43
Below is the implementation of the above approach:
C++
// C++ program to check whether a number // is divisible by 43 or not #include<bits/stdc++.h> #include<stdlib.h> using namespace std; // Function to check if the number is divisible by 43 or not bool isDivisible( int n) { int d; // While there are at least two digits while (n / 100) { // Extracting the last d = n % 10; // Truncating the number n /= 10; // adding thirteen times the last // digit to the remaining number n = abs (n+(d * 13)); } // Finally return if the two-digit // number is divisible by 43 or not return (n % 43 == 0) ; } // Driver Code int main() { int N = 2795; if (isDivisible(N)) cout<< "Yes" <<endl ; else cout<< "No" <<endl ; return 0; } // This code is contributed by ANKITKUMAR34 |
Java
// Java program to check whether a number // is divisible by 43 or not class GFG { // Function to check if the number is divisible by 43 or not static boolean isDivisible( int n) { int d; // While there are at least two digits while ((n / 100 ) > 0 ) { // Extracting the last d = n % 10 ; // Truncating the number n /= 10 ; // adding thirteen times the last // digit to the remaining number n = Math.abs(n+(d * 13 )); } // Finally return if the two-digit // number is divisible by 43 or not return (n % 43 == 0 ) ; } // Driver Code public static void main(String[] args) { int N = 2795 ; if (isDivisible(N)) System.out.print( "Yes" ); else System.out.print( "No" ); } } // This code is contributed by PrinciRaj1992 |
Python 3
# Python program to check whether a number # is divisible by 43 or not # Function to check if the number is # divisible by 43 or not def isDivisible(n) : # While there are at least two digits while n / / 100 : # Extracting the last d = n % 10 # Truncating the number n / / = 10 # Adding thirteen times the last # digit to the remaining number n = abs (n + (d * 13 )) # Finally return if the two-digit # number is divisible by 43 or not return (n % 43 = = 0 ) # Driver Code if __name__ = = "__main__" : N = 2795 if (isDivisible(N)): print ( "Yes" ) else : print ( "No" ) |
C#
// C# program to check whether a number // is divisible by 43 or not using System; class GFG { // Function to check if the number is divisible by 43 or not static bool isDivisible( int n) { int d; // While there are at least two digits while (n / 100 > 0) { // Extracting the last d = n % 10; // Truncating the number n /= 10; // adding thirteen times the last // digit to the remaining number n = Math.Abs(n + (d * 13)); } // Finally return if the two-digit // number is divisible by 43 or not return (n % 43 == 0) ; } // Driver Code public static void Main() { int N = 2795; if (isDivisible(N)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by AbhiThakur |
Javascript
<script> //javascript program to check whether a number // is divisible by 43 or not // Function to check if the number is divisible by 43 or not function isDivisible(n) { let d; // While there are at least two digits while (parseInt(n/100) > 0) { // Extracting the last d = n % 10; // Truncating the number n = parseInt(n / 10) // adding thirteen times the last // digit to the remaining number n = Math.abs(n+(d * 13)); } // Finally return if the two-digit // number is divisible by 43 or not return (n % 43 == 0) ; } // Driver Code let N = 2795; if (isDivisible(N)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by vaibhavrabadiya117. </script> |
Yes
Time Complexity: O(log10N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!