Friday, January 10, 2025
Google search engine
HomeData Modelling & AICheck if the given point lies inside given N points of a...

Check if the given point lies inside given N points of a Convex Polygon

Given coordinates of the N points of a Convex Polygon. The task is to check if the given point (X, Y) lies inside the polygon. Examples:

Input: N = 7, Points: {(1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4)}, Query: X = 3, Y = 2 Below is the image of plotting of the given points: Output: YES Input: N = 7, Points: {(1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4)}, Query: X = 3, Y = 9 Output: NO

Approach: The idea is to use Graham Scan Algorithm to find if the given point lies inside the Convex Polygon or not. Below are some of the observations:

  • Suppose the point (X, Y) is a point in the set of points of the convex polygon. If the Graham Scan Algorithm is used on this set of points, another set of points would be obtained, which makes up the Convex Hull.
  • If the point (X, Y) lies inside the polygon, it won’t lie on the Convex Hull and hence won’t be present in the newly generated set of points of the Convex Hull.
  • If the point (X, Y) lies outside the polygon, it will then lie on the Convex Hull formed and hence would be present in the newly generated set of points of the Convex Hull.

Below are the steps to solve the problem:

  1. Sort the given points along with the query point in the increasing order of their abscissa values. If the abscissa values(x-coordinates) of any two points are the same, then sort them on the basis of their ordinate value.
  2. Set the bottom-left point as the start point and top-right point as the end point of the convex hull.
  3. Iterate over all the points and find out the points, forming the convex polygon, that lies in between the start and endpoints in the clockwise direction. Store these points in a vector.
  4. Iterate over all the points and find out the points, forming the convex polygon, that lies in between the start and endpoints in the counter-clockwise direction. Store these points in the vector.
  5. Check if the query point exists in the vector then the point lies outside the convex hull. So return “No”.
  6. If the point doesn’t exist in the vector, then the point lies inside the convex hull print “Yes”.

Below is the implementation based on the above approach: 

CPP




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
   
// Sorting Function to sort points
bool cmp(pair<int, int>& a,
         pair<int, int>& b)
{
   
    if (a.first == b.first)
        return a.second < b.second;
    return a.first < b.first;
}
   
// Function To Check Clockwise
// Orientation
int cw(pair<int, int>& a,
       pair<int, int>& b,
       pair<int, int>& c)
{
   
    int p = a.first * (b.second - c.second)
            + b.first * (c.second - a.second)
            + c.first * (a.second - b.second);
   
    return p < 0ll;
}
   
// Function To Check Counter
// Clockwise Orientation
int ccw(pair<int, int>& a,
        pair<int, int>& b,
        pair<int, int>& c)
{
   
    int p = a.first * (b.second - c.second)
            + b.first * (c.second - a.second)
            + c.first * (a.second - b.second);
   
    return p > 0ll;
}
   
// Graham Scan algorithm to find Convex
// Hull from given points
vector<pair<int, int> > convexHull(
    vector<pair<int, int> >& v)
{
    // Sort the points
    sort(v.begin(),
         v.end(), cmp);
   
    int n = v.size();
    if (n <= 3)
        return v;
   
    // Set starting and ending points as
    // left bottom and top right
    pair<int, int> p1 = v[0];
    pair<int, int> p2 = v[n - 1];
   
    // Vector to store points in
    // upper half and lower half
    vector<pair<int, int> > up, down;
   
    // Insert StartingEnding Points
    up.push_back(p1);
    down.push_back(p1);
   
    // Iterate over points
    for (int i = 1; i < n; i++) {
   
        if (i == n - 1 || !ccw(p1, v[i], p2)) {
   
            while (up.size() > 1
                   && ccw(up[up.size() - 2],
                          up[up.size() - 1],
                          v[i])) {
   
                // Exclude this point
                // if we can form better
   
                up.pop_back();
            }
   
            up.push_back(v[i]);
        }
   
        if (i == n - 1 || !cw(p1, v[i], p2)) {
   
            while (down.size() > 1
                   && cw(down[down.size() - 2],
                         down[down.size() - 1],
                         v[i])) {
   
                // Exclude this point
                // if we can form better
                down.pop_back();
            }
            down.push_back(v[i]);
        }
    }
   
    // Combine upper and  lower half
    for (int i = down.size() - 2;
         i > 0; i--)
        up.push_back(down[i]);
   
    // Remove duplicate points
    up.resize(unique(up.begin(),
                     up.end())
              - up.begin());
   
    // Return the points on Convex Hull
    return up;
}
   
// Function to find if point lies inside
// a convex polygon
bool isInside(vector<pair<int, int> > points,
              pair<int, int> query)
{
    // Include the query point in the
    // polygon points
    points.push_back(query);
   
    // Form a convex hull from the points
    points = convexHull(points);
   
    // Iterate over the points
    // of convex hull
    for (auto x : points) {
   
        // If the query point lies
        // on the convex hull
        // then it wasn't inside
        if (x == query)
            return false;
    }
   
    // Otherwise it was Inside
    return true;
}
   
// Driver Code
int main()
{
   
    // Points of the polygon
    // given in any order
    int n = 7;
    vector<pair<int, int> > points;
   
    points = { { 1, 1 }, { 2, 1 }, { 3, 1 },
               { 4, 1 }, { 4, 2 }, { 4, 3 },
               { 4, 4 } };
   
    // Query Points
    pair<int, int> query = { 3, 2 };
   
    // Check if its inside
    if (isInside(points, query)) {
        cout << "YES" << endl;
    }
    else {
        cout << "NO" << endl;
    }
   
    return 0;
}


Java




import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
 
public class GFG {
    // Function To Check Clockwise Orientation
    static boolean cw(int[] a, int[] b, int[] c)
    {
        int p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1])
                + c[0] * (a[1] - b[1]);
 
        return p < 0;
    }
 
    // Function To Check Counter Clockwise Orientation
    static boolean ccw(int[] a, int[] b, int[] c)
    {
        int p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1])
                + c[0] * (a[1] - b[1]);
 
        return p > 0;
    }
 
    // Graham Scan Algorithm To Find Convex Hull From Given
    // Points
    static int[][] convexHull(int[][] v)
    {
        // Sort The Points
        Arrays.sort(v, (a, b) -> a[0] - b[0]);
 
        int n = v.length;
        if (n <= 3) {
            return v;
        }
 
        // Set Starting And Ending Points As Left Bottom And
        // Top Right
        int[] p1 = v[0];
        int[] p2 = v[n - 1];
 
        // Vector To Store Points In Upper Half And Lower
        // Half
        List<int[]> up = new ArrayList<int[]>();
        List<int[]> down = new ArrayList<int[]>();
 
        // Insert Starting/Ending Points
        up.add(p1);
        down.add(p1);
 
        // Iterate Over Points
        for (int i = 1; i < n; i++) {
            if (i == n - 1 || !ccw(p1, v[i], p2)) {
                while (up.size() > 1
                       && ccw(up.get(up.size() - 2),
                              up.get(up.size() - 1),
                              v[i])) {
                    // Exclude This Point If We Can Form
                    // Better
                    up.remove(up.size() - 1);
                }
 
                up.add(v[i]);
            }
 
            if (i == n - 1 || !cw(p1, v[i], p2)) {
                while (down.size() > 1
                       && cw(down.get(down.size() - 2),
                             down.get(down.size() - 1),
                             v[i])) {
                    // Exclude This Point If We Can Form
                    // Better
                    down.remove(down.size() - 1);
                }
 
                down.add(v[i]);
            }
        }
 
        // Combine Upper And Lower Half
        for (int i = down.size() - 2; i >= 0; i--) {
            up.add(down.get(i));
        }
 
        // Return The Points On Convex Hull
        return up.toArray(new int[0][]);
    }
 
    // Function To Find If Point Lies Inside A convex
    // polygon
    static boolean isInside(int[][] points, int[] query)
    {
        // Include the query point in the
        // polygon points
        int[][] points1 = new int[points.length + 1][];
        for (int i = 0; i < points.length; i++)
            points1[i] = points[i];
        points1[points.length] = query;
 
        // Form a convex hull from the points
        points = convexHull(points);
 
        // Iterate over the points
        // of convex hull
        for (int[] x : points) {
 
            // If the query point lies
            // on the convex hull
            // then it wasn't inside
            if (Arrays.equals(x, query))
                return false;
        }
 
        // Otherwise it was Inside
        return true;
    }
 
    // Driver Code
 
    public static void main(String[] args)
    {
        // Points of the polygon
        // given in any order
        int n = 7;
        int[][] points
            = { new int[] { 1, 1 }, new int[] { 2, 1 },
                new int[] { 3, 1 }, new int[] { 4, 1 },
                new int[] { 4, 2 }, new int[] { 4, 3 },
                new int[] { 4, 4 } };
 
        // Query Points
        int[] query = { 3, 2 };
 
        // Check if its inside
        if (isInside(points, query)) {
            System.out.println("YES");
        }
        else {
            System.out.println("NO");
        }
    }
}


Python3




# Python3 program for the above approach
 
# Function To Check Clockwise
# Orientation
def cw(a, b, c):
    p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0] * (a[1] - b[1]);
   
    return p < 0;
 
# Function To Check Counter
# Clockwise Orientation
def ccw(a, b, c):
    p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0] * (a[1] - b[1]);
   
    return p > 0;
 
# Graham Scan algorithm to find Convex
# Hull from given points
def convexHull(v):
 
    # Sort the points
    v.sort();
     
   
    n = len(v);
    if (n <= 3):
        return v;
   
    # Set starting and ending points as
    # left bottom and top right
    p1 = v[0];
    p2 = v[n - 1];
   
    # Vector to store points in
    # upper half and lower half
    up = []
    down = [];
   
    # Insert StartingEnding Points
    up.append(tuple(p1));
    down.append(p1);
   
    # Iterate over points
    for i in range(1, n):
         
        if i == n - 1 or (not ccw(p1, v[i], p2)):
 
            while len(up) > 1 and ccw(up[len(up) - 2], up[len(up) - 1], v[i]):
 
                # Exclude this point
                # if we can form better
   
                up.pop();
             
   
            up.append(tuple(v[i]));
         
   
        if i == n - 1 and  (not cw(p1, v[i], p2)):
   
            while (len(down) > 1) and cw(down[len(down) - 2], down[len(down) - 1], v[i]):
   
                # Exclude this point
                # if we can form better
                down.pop();
             
            down.append(v[i]);
         
    # Combine upper and  lower half
    for i in range(len(down) - 2, -1, -1):
        up.append(tuple(down[i]));
   
    # Remove duplicate points
    up = set(up)
    up = list(up)
   
    # Return the points on Convex Hull
    return up;
 
# Function to find if point lies inside
# a convex polygon
def isInside( points, query):
 
    # Include the query point in the
    # polygon points
    points.append(query);
   
    # Form a convex hull from the points
    points = convexHull(points);
   
    # Iterate over the points
    # of convex hull
    for x in points:
   
        # If the query point lies
        # on the convex hull
        # then it wasn't inside
        if x == query:
            return False;
     
    # Otherwise it was Inside
    return True;
 
# Driver Code
 
# Points of the polygon
# given in any order
n = 7;
points = [[1, 1 ], [2, 1 ], [ 3, 1 ], [ 4, 1 ], [ 4, 2 ], [4, 3 ], [ 4, 4 ]];
   
# Query Points
query = [ 3, 2 ];
   
# Check if its inside
if (isInside(points, query)) :
    print("YES");
     
else :
    print("NO");
     
  # This code is contributed by phasing17.


C#




using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG {
    // Function To Check Clockwise Orientation
    static bool cw(int[] a, int[] b, int[] c)
    {
        int p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1])
                + c[0] * (a[1] - b[1]);
 
        return p < 0;
    }
 
    // Function To Check Counter Clockwise Orientation
    static bool ccw(int[] a, int[] b, int[] c)
    {
        int p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1])
                + c[0] * (a[1] - b[1]);
 
        return p > 0;
    }
 
    // Graham Scan Algorithm To Find Convex Hull From Given
    // Points
    static int[][] convexHull(int[][] v)
    {
        // Sort The Points
        Array.Sort(v, (a, b) => a[0] - b[0]);
 
        int n = v.Length;
        if (n <= 3) {
            return v;
        }
 
        // Set Starting And Ending Points As Left Bottom And
        // Top Right
        int[] p1 = v[0];
        int[] p2 = v[n - 1];
 
        // Vector To Store Points In Upper Half And Lower
        // Half
        List<int[]> up = new List<int[]>();
        List<int[]> down = new List<int[]>();
 
        // Insert Starting/Ending Points
        up.Add(p1);
        down.Add(p1);
 
        // Iterate Over Points
        for (int i = 1; i < n; i++) {
            if (i == n - 1 || !ccw(p1, v[i], p2)) {
                while (up.Count > 1
                       && ccw(up[up.Count - 2],
                              up[up.Count - 1], v[i])) {
                    // Exclude This Point If We Can Form
                    // Better
                    up.RemoveAt(up.Count - 1);
                }
 
                up.Add(v[i]);
            }
 
            if (i == n - 1 || !cw(p1, v[i], p2)) {
                while (down.Count > 1
                       && cw(down[down.Count - 2],
                             down[down.Count - 1], v[i])) {
                    // Exclude This Point If We Can Form
                    // Better
                    down.RemoveAt(down.Count - 1);
                }
 
                down.Add(v[i]);
            }
        }
 
        // Combine Upper And Lower Half
        for (int i = down.Count - 2; i >= 0; i--) {
            up.Add(down[i]);
        }
 
        // Remove Duplicate Points
        up = new List<int[]>(new HashSet<int[]>(up));
 
        // Return The Points On Convex Hull
        return up.ToArray();
    }
 
    // Function To Find If Point Lies Inside A
    //  convex polygon
    static bool isInside(int[][] points, int[] query)
    {
        // Include the query point in the
        // polygon points
        int[][] points1 = new int[points.Length + 1][];
        for (int i = 0; i < points.Length; i++)
            points1[i] = points[i];
        points1[points.Length] = query;
 
        // Form a convex hull from the points
        points = convexHull(points);
 
        // Iterate over the points
        // of convex hull
        foreach(var x in points)
        {
 
            // If the query point lies
            // on the convex hull
            // then it wasn't inside
            if (Enumerable.SequenceEqual(x, query))
                return false;
        }
 
        // Otherwise it was Inside
        return true;
    }
 
    // Driver Code
 
    public static void Main(string[] args)
    {
        // Points of the polygon
        // given in any order
        int n = 7;
        int[][] points
            = { new int[] { 1, 1 }, new int[] { 2, 1 },
                new int[] { 3, 1 }, new int[] { 4, 1 },
                new int[] { 4, 2 }, new int[] { 4, 3 },
                new int[] { 4, 4 } };
 
        // Query Points
        int[] query = { 3, 2 };
 
        // Check if its inside
        if (isInside(points, query)) {
            Console.WriteLine("YES");
        }
        else {
            Console.WriteLine("NO");
        }
    }
}


Javascript




// JS program for the above approach
 
   
// Sorting Function to sort points
function cmp(a, b)
{
   
    if (a[0] == b[0])
        return a[1] < b[1];
    return a[0] < b[0];
}
   
// Function To Check Clockwise
// Orientation
function cw(a, b, c)
{
   
    let p = a[0] * (b[1] - c[1])
            + b[0] * (c[1] - a[1])
            + c[0] * (a[1] - b[1]);
   
    return p < 0;
}
   
// Function To Check Counter
// Clockwise Orientation
function ccw(a, b, c)
{
   
    let p = a[0] * (b[1] - c[1])
            + b[0] * (c[1] - a[1])
            + c[0] * (a[1] - b[1]);
   
    return p > 0;
}
   
// Graham Scan algorithm to find Convex
// Hull from given points
function convexHull(v)
{
    // Sort the points
    v.sort(cmp);
     
   
    let n = v.length;
    if (n <= 3)
        return v;
   
    // Set starting and ending points as
    // left bottom and top right
    let p1 = v[0];
    let p2 = v[n - 1];
   
    // Vector to store points in
    // upper half and lower half
    let  up = [], down = [];
   
    // Insert StartingEnding Points
    up.push(p1);
    down.push(p1);
   
    // Iterate over points
    for (var i = 1; i < n; i++) {
   
        if (i == n - 1 || !ccw(p1, v[i], p2)) {
   
            while (up.length > 1
                   && ccw(up[up.length - 2],
                          up[up.length - 1],
                          v[i])) {
   
                // Exclude this point
                // if we can form better
   
                up.pop();
            }
   
            up.push(v[i]);
        }
   
        if (i == n - 1 || !cw(p1, v[i], p2)) {
   
            while (down.length > 1
                   && cw(down[down.length - 2],
                         down[down.length - 1],
                         v[i])) {
   
                // Exclude this point
                // if we can form better
                down.pop();
            }
            down.push(v[i]);
        }
    }
   
    // Combine upper and  lower half
    for (var i = down.length - 2;
         i > 0; i--)
        up.push(down[i]);
   
    // Remove duplicate points
    up = new Set(up)
    up = Array.from(up)
   
    // Return the points on Convex Hull
    return up;
}
   
// Function to find if point lies inside
// a convex polygon
function isInside( points, query)
{
    // Include the query point in the
    // polygon points
    points.push(query);
   
    // Form a convex hull from the points
    points = convexHull(points);
   
    // Iterate over the points
    // of convex hull
    for (let x of points) {
   
        // If the query point lies
        // on the convex hull
        // then it wasn't inside
        if (x == query)
            return false;
    }
   
    // Otherwise it was Inside
    return true;
}
   
// Driver Code
 
   
    // Points of the polygon
    // given in any order
let n = 7;
let  points = [[1, 1 ], [2, 1 ], [ 3, 1 ],
               [ 4, 1 ], [ 4, 2 ], [4, 3 ],
               [ 4, 4 ]];
   
    // Query Points
    let query = [ 3, 2 ];
   
    // Check if its inside
    if (isInside(points, query)) {
        console.log("YES");
    }
    else {
       console.log("NO");
    }
  


Output:

YES

Time Complexity: O(N * log(N)) Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments